
- •1. Electrostatic field. Coulomb’s law. Gauss law (Электростатическое поле. Закон Кулона. Закон Гаусса)
- •Variables and units
- •Coulomb’s Law. (ЗаконКулона)
- •Electric Field Strength e and Displacement Field d. (Напряжённостьисмещениеэлектрическогополя)
- •Gauss’ Law. (ЗаконГаусса)
- •2. Poisson’s and Laplace’s equations for the potential of electric field (Уравнения Пуассона и Лапласа для потенциала электрического поля) Electric Potential. (Электрический потенциал)
- •Poisson’s and Laplace’ s equations. (Уравнения Пуассона и Лапласа)
- •3. Electrostatic Energy (Электростатическая энергия) Electrostatic Energy (Электростатическаяэнергия)
- •Virtual experiment. (Эксперимент по нахождению энергии системы)
- •Consequences (Следствия)
- •4. Power and Joule’s Law (Энергия и закон Джоуля-Ленца)
- •5. Continuity Equation (Уравнения непрерывности) ContinuityEquation (Уравнение непрерывности)
- •Image method for the flat boundary between magnetic media (Метод изображений для плоской границы между магнитными носителями)
- •8. Static magnetic field. Biot–Savart’s Law. Ampere’s Law (Статическое магнитное поле. Закон Био–Савара. Закон Ампера)
- •Variables and units (Переменные и единицы измерения)
- •Main Relations (Основные соотношения)
- •Magnetic flux density (Индукция магнитного поля)
- •Biot-Savart’s law (Закон Био-Савара)
- •Ampere’s law (Закон полного тока)
- •The cut in the space (Разрез в пространстве)
- •Laplace equation for the scalar magnetic potential (Уравнение Лапласа для скалярного магнитного потенциала)
- •10. Vector magnetic potential. Inductance (Векторный магнитный потенциал. Индуктивность)
- •Vector magnetic potential (Векторный магнитный потенциал)
- •Magnetic flux (Магнитный поток)
- •Differential equation for the vector magnetic potential (Дифференциальное уравнение для векторного магнитного потенциала)
- •Gauging of the vector magnetic potential (Калибровка векторного магнитного потенциала)
- •Integral presentation of the vector magnetic potential (Интегральное представление векторного потенциала)
- •Inductance (Индуктивность)
- •Mutual inductance (Взаимная индуктивность)
- •Inductance of thin contours (Индуктивность тонких контуров)
- •12. Internal inductance of a thin conductor (Внутренняя индуктивность тонкого проводника) Flux linkage of a thin current layer (Потокосцепление тонкого слоя с током)
- •Internal inductance of a thin conductor (Внутренняя индуктивность тонкого проводника)
- •13. Inductance of a two wire transmission line (Индуктивность двухпроводной линии).
- •14. Variable separation method in a cylindrical coordinate system (Метод разделения переменных в цилиндрической системе координат). Application of Laplace’s equation (Применение уравнения Лапласа).
- •Angular function (Угловая функция)
- •Radial function (Радиальная функция)
- •General solution of the Laplace’s equation in a cylindrical coordinate system (Общее решение уравнения Лапласа в цилиндрической системе координат)
- •15. The Faraday’s law (Закон электромагнитной индукции).
- •Lenz’s Law (правило Ленца)
- •Induction by a temporal change of b (Индукция за счёт временного изменения b)
- •16. Induction through the motion of a conductor (Индукция за счет движения проводника).
- •17. Induction by simultaneous temporal change of b and motion of the conductor (Индукция одновременным изменением b во времени и движением проводника).
- •18. Unipolar generator (Униполярный генератор).
- •19. Hering’s paradox (Парадокс Геринга)
- •20. Diffusion of magnetic fields into conductors (Распространение электромагнитного поля в проводнике)
- •21. Periodic electromagnetic fields in conductors. (Периодическое электромагнитное поле в проводниках)
- •Penetration of the electromagnetic field into a conductor. (Проникновение электромагнитного поля в проводник)
- •The skin effect. (Скин-эффект)
- •22. Poynting theorem. (Теорема Пойнтинга) Electromagnetic Field Energy. (Энергия электромагнитного поля)
- •The rate of decrease of the electromagnetic field energy in a closed volume. (Скорость уменьшения энергии электромагнитного поля в замкнутом объёме)
- •Transmission of energy in a dc line (Передача энергии в линиях постоянного тока)
- •The field picture near the wires with current (Картина поля вблизи провода с током)
- •25. Energy flows in static electric and magnetic fields (Поток энергии в статических электрических и магнитных полях).
- •26. The reduced magnetic potential (Редуцированный магнитный потенциал). Reduced scalar magnetic potential (Редуцированный скалярный магнитный потенциал)
- •Combination of scalar magnetic potential and reduced magnetic potential (Комбинация скалярного магнитного потенциала и редуцированного магнитного потенциала)
- •27. Classification of numerical methods of the electromagnetic field modeling (Классификация численных методов моделирования электромагнитного поля).
- •Classification of the problems (Классификация проблем)
- •Classification of the methods (Классификация методов)
- •28. Method of moments
- •Discretization of the problem domain (Дискретизация проблемной области)
- •29. Basic principles of the finite element method.
- •30. Finite functions (Ограниченная функция – отлична от нуля только в пределах треугольника)
- •Simplex coordinates
- •Approximation of functions inside triangles (Аппроксимация функций внутри треугольника)
- •Approximation of the equation (Аппроксимация уравнения)
- •31. Weighted residual method (метод взвешенных невязок)
- •32. Weak formulation of the electromagnetic field modeling problem
- •33. Boundary conditions in electric and magnetic fields
- •1) First type boundary conditions
- •34. Main equations of electromagnetic field in integral form.
- •35. Main equations of electromagnetic field in differential form.
- •36. Electric field of a point charge (Электрическое поле точечного заряда)
- •37. Electric field of a uniformly charged sphere (Электрическое поле равномерно заряженной сферы)
- •38. Flat capacitor. Field. Surface charge. Capacity. (Плоский конденсатор. Поле. Поверхностный заряд. Вместимость.)
- •39.2 Inductance of a cylindrical coil with the rectangular cross section(Индуктивность цилиндрической катушки прямоугольного сечения).
- •4 0.1 Electric field induced by charged line placed above conducting surface (Электрическое поле, создаваемое заряженной линией, помещенной над проводящей поверхностью).
- •4 0.2. Magnetic field induced by the line with a current placed above a ferromagnetic surface with infinitely high magnetic permeability
The field picture near the wires with current (Картина поля вблизи провода с током)
That’s the general picture which corresponds to the transmission line with arbitrary load. Due to the presence of a small tangential component of the electric field strength vector at the surface of the conductor with current, the resulting electric field strength vector E is not perpendicular to the surface of the conductor. This leads to the appearance of the normal component of the Poynting vector at the surface of the conductor. Consequently part of the transmitted energy is absorb inside the wires of the transmission line.
There are two wires which carry current to the load and from the load. Certainly, there should be a voltage between these two wires that’s why that’s a line which shows the electric field in the space around these wires. The normal component of the electric field corresponds to the voltage between wires that’s the voltage as if two lines form a capacitor. But also, there is a horizontal component which corresponds to the Ohm's Law, in such a case the Poynting’s vector will come just inside the wire, partly, the energy is transformed from the source to the load, and the horizontal part of the Poynting’s vector just illustrate this energy, transformed from the source to the load. But the small vertical component of the Poynting’s vector illustrates the power, which is dissipated in non-ideal wires. If the wires are ideal than there should not be component of the Poynting’s vector which will come inside the wire. All these S-vectors will be parallel to the wire surface. H here in any case is induced by the current inside wire and the H-field, magnetic field, circulates around the wires, H-vector has no component which is directed from the power source to the load, this vector is always normal to our surface.
25. Energy flows in static electric and magnetic fields (Поток энергии в статических электрических и магнитных полях).
W
e
can create a system where both electric and magnetic field are
constant and the same they are normal to each other. Formally, the
Poynting vector can also be applied to static electric and magnetic
fields. As an example, we can consider a cylindrical capacitor in a
homogeneous magnetic field.
These
two dashed (пунктир) areas are the
poles of the magnet. So, this is magnet and magnetic field, which is
shown here like vertical lines. The magnetic field is uniform,
everywhere has the same volume, magnitude and has only one component
– vertical. Now electric field, there is a cylindrical capacitor,
the central electrode is charged, and this outer electrode is charged
to the same charge but another potential. That’s why there is a
potential difference between central electrode and outer electrode.
In such a case an electric field will be induced, and we shall
consider that this E (electric field) has only horizontal direction.
Now, electric and magnetic fields in every point inside the capacitor
will be normally directed, the direction between them will be equal
to 90°. Before we have seen if electric and magnetic field has such
directions they produce the Poynting vector (energy flow vector). If
we shall formally use this assumption than we can say – there
should be energy flow and we could calculate this energy flow using
formal rules.
.
(What this formula shows? It is the cylindrical capacitor, in the cylindrical capacitor the electric field depends on the radius, propotional to the radius). This is just an expression which corresponds to the electric field, it has inverse proportional to the radius, if we shall move from the central wire, we see that the electrical field will be less and less. Here is the form r (radius) over r squared it is done to tip this vector product. Nevertheless it is interesting that we have found out there will be a flow of the energy this brackets not only the magnitude but for understanding what will be the direction of energy flow. This Poynting's vector should be normal to the H-vector and radius, if we shall at the system from the another direction (from the up part) we will see that this energy flow will circulate around the central electrode in the space of the capacitor.