Скачиваний:
27
Добавлен:
14.06.2022
Размер:
1.72 Mб
Скачать

The inverse point

The inverse point is located inside a circle

r

A B C

A position of inverse point is defined by a relation

AC BC r2

11

Normal component of the field intensity

The normal component of

 

 

P

the external field intensity

b

En

 

 

 

cos( )

 

 

 

En(ext)

 

 

 

2 0

b

A

 

 

 

 

 

 

 

surface charges:

 

 

 

 

(x) 1

2 2D(ext)

 

 

 

 

1

n

 

 

 

 

2

 

 

C

2

1 0

Field displacement induced by surface charges:

 

(x)

1

2

(ext )

 

 

 

 

Dn

Dn

2

2

 

 

1

 

12

Normal component of the field intensity

Field intensity induced by

 

 

the surface charges:

A

 

 

 

 

 

2

1

 

 

 

 

 

cos( )

En

 

 

 

 

 

 

 

b

 

 

2

 

 

 

2 0

1

Normal component of the field intensity outside the cylinders:

 

 

P

b

Bn

 

C

(ext )

( )

En En

 

En

To find a proper solution of the problem outside the cylinder it is

 

enough to ensure the right values of the normal component of the

 

field intensity along the interface!

13

Geometrical relations

Wire with the linear charge

density of τ is located in the point A

P is an arbitrary point at the circle

B is the inverse point

 

 

P

 

 

 

 

 

 

 

C

 

 

A

 

 

B

Consider triangles APC and PCB

 

AC

PC

PC r

1.

PC

BC

2.Angle C is common

The triangles are similar !

14

Angles

APQ 180 APB

 

Q

 

 

 

 

P

 

 

 

 

ABP 180 APB

 

 

 

 

 

 

 

C

 

 

 

 

 

 

A

 

 

B

APQ ABP

15

Geometrical relations

Wire with the linear charge

density of τ is located in the point A

P is an arbitrary point at the circle

B is the inverse point

b

A

Evidently

AB b cos( ) a cos( )

From the red triangle:

AB sin( ) AO

OO 90

a

C

B

b sin( ) AO

So we get

b cos( ) a cos( ) b sin( )

 

sin( )

16

Geometrical relations

PQ a sin( )

PQ r sin( )

Inside a triangle a sum of angles is 180º:

90 180

90 180

So we have:

P

ra

C

QB

Combining all these relations:

a sin( ) r sin( )

 

 

17

Trigonometric relations

We just have got two relations:

b cos( ) a cos( ) b sin( )

a sin( ) r sin( )

 

sin( )

Let us combine them:

 

b cos( ) a cos( ) a b sin( ) r sin( )

Taking into account: sin( ) sin( ) sin( ) sin( )

2

sin( ) ar sin( )

sin( ) sin( ) 2 sin( ) cos( ) sin( ) 2ar sin( ) cos( )

18

Trigonometric relations

b cos( ) a cos( ) a b sin( ) r sin( )

sin( ) sin( ) 2 sin( ) cos( ) sin( ) 2ar sin( ) cos( )

b cos( ) a cos( )

a b sin( )

 

r sin( )

a b 2r cos( ) sin( ) r a sin( )

b cos( ) a cos( )

a b

b 2 cos( )

: ab

 

r

 

 

We shall get:

cos( )

 

cos( )

1

b

 

a

r

 

19

Geometrical relations

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

cos( )

 

cos( )

 

1

 

 

 

 

 

 

 

 

a

C

 

b

 

 

a

 

r

 

 

 

 

 

 

 

 

A

 

 

B

 

 

 

 

 

 

 

2

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos( )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

En

 

 

 

2

 

 

 

 

b

 

 

 

 

 

 

2 0

1

 

 

 

 

The normal component of the field intensity induced by the surface charges may be expressed as

 

 

 

 

2

1

 

 

 

 

 

2

1

 

1

 

 

 

cos( )

 

 

 

 

 

 

 

 

 

 

En

 

 

2

 

 

a

 

 

2

 

 

 

 

 

2 0

1

 

2 0

1 r

20

Соседние файлы в папке Лекции+экзамен