Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие 700445.doc
Скачиваний:
5
Добавлен:
01.05.2022
Размер:
7.68 Mб
Скачать
    1. Задание 1

Разработать программное средство для решения систем линейных уравнений (методы решения определяет преподаватель). Варианты

1. 2.

. .

3.

.

4.

5.

.

6.

7.

8.

9.

10.

ЗАДАНИЕ 2. ЦЕЛОЧИСЛЕННЫЕ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

Модели

Дискретные (целочисленные) задачи математического программирования могут возникать различными путями. Существуют задачи линейного программирования, которые формально к целочисленным не относятся (требование целочисленности переменных в них в явном виде не накладывается), но которые при целочисленных исходных данных всегда обладают целочисленным планом. Этим свойством обладают транспортная задача и различные ее варианты (задача о назначениях).

Первоначальным стимулом к изучению целочисленных и дискретных задач явилось рассмотрение задач линейного программирования, в которых переменные представляли физически неделимые величины (скажем, количество единиц продукции разных видов). Для характеристики этого класса моделей используется термин «задачи с неделимостями».

Другим важным толчком к построению теории дискретного программирования явился новый подход к некоторым экстремальным комбинаторным задачам, для решения которых приходится вводить булевы переменные, носящие логический характер (х = 1 или х = 0).

К целочисленным (точнее, частично целочисленным) задачам линейного программирования удается свести также ряд задач, в которых явное требование целочисленности отсутствует, зато имеются некоторые особенности, выводящие их за рамки линейного программирования. Эти особенности могут относиться либо к целевой функции, либо к области допустимых решений.

Итак, можно выделить следующие основные классы задач дискретного программирования:

1) транспортная задача и ее варианты;

2) задачи с неделимостями;

3) экстремальные комбинаторные задачи;

4) задачи с неоднородной разрывной целевой функцией;

5) задачи на неклассических областях.

Экстремальные комбинаторные задачи. Задачи данного класса, называемые также задачами выбора, состоят в отыскании среди конечного множества альтернатив одной, которой отвечает экстремальное значение принятой целевой функции.

Задача о коммивояжере — классический пример задачи выбора оптимального маршрута. Формулируется она следующим образом. Коммивояжер должен выехать из определенного города и вернуться в него, побывав в каждом из городов лишь по одному разу и проехав минимальное расстояние.

Пусть хij = 1, если коммивояжер переезжает из города i непосредственно в город j, и xij = 0 в противном случае. Обозначим через сij расстояние между городами i и j (чтобы избежать бессмысленных значений хij = 1, предполагается, что сii равны достаточно большому числу).

Тогда формальная модель имеет вид

К приведенным ограничениям необходимо добавить условия на недопустимость подциклов, т.е. повторного посещения городов (за исключением исходного). Это ограничения вида

где на переменные zi и zj не требуется накладывать никаких ограничений.

Общая задача календарного планирования формулируется следующим образом. Имеется п станков (машин), на которых требуется обработать m деталей. Заданы маршруты (в общем случае различные) обработки каждой детали на каждом из станков или группе станков. Задана также продолжительность операций обработки деталей. Предполагается, что одновременно на станке можно обрабатывать не более одной детали. Требуется определить оптимальную последовательность обработки. Критерием оптимальности могут выступать продолжительность обработки всех деталей, суммарные затраты на обработку, общее время простоя станков и др. Существует огромное число постановок данной задачи, учитывающих конкретные условия производства.

Один из представителей задач данного типа — так называемая задача о ранце. Имеется п предметов. Предмет j (j = 1, ..., п) обладает весом wj и полезностью сj. Пусть b общий максимально допустимый вес предметов, которые можно положить в ранец. Требуется выбрать предметы таким образом, чтобы их общий вес не превышал максимально допустимый и при этом суммарная полезность (ценность) содержимого ранца была максимальной. Пусть хj = 1, если предмет положен в ранец, и хj = 0 в противном случае. Математическая формулировка задачи имеет вид

К классу экстремальных комбинаторных задач принадлежит также линейный и нелинейный варианты задача о назначениях.

Для решения целочисленных задач используются следующие методы:

1) симплекс-метод (для транспортных задач, задач о назначениях);

2) метод отсечения (метод Гомори);

3) метод ветвей и границ (в общем случае не обеспечивает получения точного решения);

4) эвристические методы (не обеспечивают получения точного решения).

Последняя группа методов может использоваться в случаях, когда применение предыдущих методов невозможно или не приводит к успеху. Кроме того, эвристические методы можно использовать для решения задач любой сложности.