
- •Аналитическая химия
- •Авторский коллектив:
- •Рецензенты:
- •Введение
- •Глава 1 основы качественного анализа
- •1.1. Качественный анализ неорганических веществ
- •1.1.1. Аналитическая классификация катионов
- •1.1.2. Аналитическая классификация анионов
- •Вопросы для самоподготовки
- •Задачи для самостоятельного решения
- •Глава 2 количественный химический анализ
- •2.1. Сущность и характеристика
- •Гравиметрического метода анализа
- •2.1.1. Операции гравиметрического анализа
- •2.1.2. Отбор средней пробы и подготовка её к анализу
- •2.1.3. Расчет навески для анализа и взвешивание
- •2.1.4. Вскрытие навески
- •2.1.5. Устранение влияния мешающих компонентов
- •2.1.6. Осаждение определяемой составной части вещества в виде малорастворимого соединения
- •2.1.6.1. Механизм образования осадков
- •2.1.6.2. Влияние условий осаждения на структуру осадка
- •2.1.6.3. Причины загрязнения осадков
- •2.1.6.4. Старение осадков
- •2.1.7. Фильтрование и промывание осадков
- •2.1.7.1. Правила фильтрования
- •2.1.7.2. Промывные жидкости
- •2.1.7.3. Высушивание, прокаливание осадков
- •2.1.7.4. Техника получения гравиметрической формы и ее взвешивание
- •2.1.8. Расчет количества определяемого вещества
- •2.1.9. Метрологическая оценка результатов анализа
- •Математическая обработка результатов количественного анализа
- •Влияние отдельных ошибок на конечный результат
- •Значащие цифры
- •Определение гигроскопичной воды Материалы, оборудование и реактивы
- •Порядок выполнения работы
- •Определение SiO2 в силикате
- •Материалы, оборудование и реактивы
- •Порядок выполнения работы
- •Определение оксида серы so3
- •Материалы, оборудование и реактивы
- •Порядок выполнения работы
- •Определение полуторных оксидов Al2o3, Fe2o3, TiO2
- •Материалы, оборудование и реактивы
- •Порядок выполнения работы
- •Вопросы для самоподготовки
- •Задачи для самостоятельного решения
- •2.2. Сущность и характеристика титриметрического метода анализа
- •2.2.1. Стандартизация растворов титрантов
- •2.2.2. Основные приемы титрования
- •2.2.3. Расчеты в титриметрическом анализе Химический эквивалент
- •Расчет результата прямого титрования при разных способах выражения концентрации раствора
- •Расчет результата в методах обратного титрования
- •2.2.4. Кривые титрования
- •2.2.5. Основные методы титриметрического анализа
- •2.2.6. Кислотно-основное титрование
- •2.2.6.1. Рабочие растворы
- •2.2.6.2. Кривые титрования и выбор индикатора
- •100,0 Мл 0,1 н hCl 0,1 н раствором NaOh
- •100,0 Мл 0,1 м уксусной кислоты 0,1 м раствором NaOh
- •2.2.7. Комплексонометрическое титрование
- •Синий цвет
- •Посуда, приборы, реактивы
- •Порядок выполнения работы
- •2.2.8. Титрование по методу осаждения
- •2.2.8.1. Аргентометрия
- •2.2.8.2. Кривые титрования и способы обнаружения конечной точки титрования
- •Порядок выполнения работы
- •2.2.9. Окислительно-восстановительное титрование
- •2.2.9.1. Перманганатометрия
- •2.2.9.2. Способы обнаружения конечной точки титрования
- •Вопросы для самоподготовки
- •Задачи для самостоятельного решения
- •Глава 3 спектральные методы анализа
- •3.1. Принципы аналитической оптической спектроскопии
- •3.2. Основные узлы и приборы для аналитической оптической спектроскопии
- •3.3. Молекулярная абсорбционная спектроскопия
- •3.3.1. Основной закон светопоглощения - закон Бугера-Ламберта-Бера
- •Таким образом
- •3.3.1.1. Ограничения и условия применения закона Бугера-Ламберта-Бера
- •3.3.1.2. Аппаратура в молекулярной абсорбционной спектроскопии
- •3.4. Молекулярная спектроскопия в инфракрасном диапазоне (икс)
- •3.4.1. Задачи, решаемые инфракрасной спектроскопией
- •Лабораторная работа № 7
- •Цель работы
- •Теоретическая часть
- •Посуда, приборы, реактивы
- •Порядок выполнения работы
- •Вопросы для самоподготовки
- •Задачи для самостоятельного решения
- •Концентрация Оптическая
- •Глава 4 электрохимические методы анализа
- •4.1. Потенциометрические методы
- •4.1.1. Методы проведения потенциометрического анализа
- •4.1.2. Потенциометрическое титрование
- •Посуда, приборы, реактивы
- •Порядок выполнения работы
- •4.2. Кулонометрический анализ
- •4.2.1. Установка для кулонометрического титрования
- •4.3. Кондуктометрические методы анализа
- •4.3.1. Прямая кондуктометрия
- •4.3.2. Кондуктометрическое титрование
- •Выполнение кондуктометрических измерений с помощью учебно-лабораторного комплекса «Химия»
- •Посуда, приборы, реактивы
- •Порядок выполнения работы
- •Вопросы для самоподготовки
- •Задачи для самостоятельного решения
- •Глава 5 хроматографические методы анализа
- •5.1. Хроматографические параметры
- •5.2. Обработка хроматограмм
- •5.3. Жидкостная хроматография
- •5.4. Газовая хроматография
- •5.5. Тонкослойная хроматография (тсх)
- •5.5.1. Параметры тонкослойной хроматографии
- •5.5.2. Количественные характеристики эффективности разделения в тсх
- •Посуда, приборы и реактивы
- •Порядок выполнения работы
- •Посуда, приборы и реактивы
- •Порядок выполнения работы
- •Вопросы для самоподготовки
- •Задачи для самостоятельного решения
- •Глава 6 микроскопические методы исследования
- •6.1. Принцип работы и конструкция сзм NanoEducator
- •6.2. Техническая спецификация оборудования NanoEducator
- •Посуда, приборы и реактивы
- •Порядок выполнения работы
- •Вопросы для самоподготовки
- •Заключение
- •Библиографический список Основная литература
- •Дополнительная литература
- •3 94006 Воронеж, ул. 20-летия Октября, 84
Расчет результата прямого титрования при разных способах выражения концентрации раствора
Обозначения величин, относящихся к раствору определяемого вещества, будем отмечать индексом "1", а к раствору титранта – индексом "2".
Если известны молярная концентрация эквивалента (нормальность) титранта C2 и объем раствора V2 в миллилитрах, израсходованный на титрование определяемого вещества, то количество вещества титранта, затраченное на реакцию, будет равно
.
В точке эквивалентности количество вещества титранта, израсходованное на реакцию, будет точно равно количеству определяемого вещества в анализируемом растворе (n1=n2). Поэтому
.
Количество определяемого вещества (в молях эквивалента), находящееся в анализируемом растворе, можно также представить соотношением
.
Отсюда получаем очень важное уравнение
C1V1 = C2V2 .
Если известен объем анализируемого раствора, то по этому уравнению можно рассчитать его концентрацию.
Масса m1 определяемого вещества в анализируемом растворе рассчитывается по соотношению
,
где Mэ1 – молярная масса эквивалента определяемого вещества.
Например, пусть раствор соляной кислоты титруют раствором NaOH с молярной концентрацией эквивалента C(NaOH)=0,1048 моль/л, и на титрование израсходовано V(NaOH)=22,52 мл этого раствора. Тогда
Рабочий раствор в титриметрическом анализе нередко характеризуют молярной концентрацией эквивалента с поправочным коэффициентом. Поправочный коэффициент равен отношению истинной молярной концентрации эквивалента Cист рабочего раствора к округленной табличной молярной концентрации эквивалента Cтабл, для которой заранее рассчитано, какой массе определяемого вещества соответствует данный объем рабочего раствора.
Например, 22,50 мл точно 0,1000 н. NaOH нейтрализуют 0,08204 г HCl, а 22,52 мл этой щелочи – 0,0821г HCl и т.д. Если истинная молярная концентрация эквивалента Cист=0,1048 моль/л, то поправочный коэффициент равен
.
При расчете результатов титрования табличный результат умножают на поправочный коэффициент. Если израсходовано 22,52 мл кислоты, табличный результат равен 0,08211 г и истинная масса кислоты составит:
m(HCl) = mтабл∙K = 0,08211 ∙ 1,048 = 0,08605 г.
Этот способ очень удобен при серийных определениях и широко используется в цеховых и заводских лабораториях.
Если известен титр T2 рабочего раствора, т.е. масса (г) растворенного вещества в 1 мл раствора, то количество вещества эквивалента титранта, вступившее в реакцию, составит
Тогда масса определяемого вещества в анализируемом растворе будет равна
Широко распространен в практике способ расчета результатов анализа с помощью условного титра рабочего раствора, или титра раствора по определяемому веществу T2/1. Он показывает массу определяемого вещества, которая соответствует 1 мл рабочего раствора. Поэтому масса определяемого вещества может быть рассчитана очень простым образом:
m1=T2/1∙V2 .
Если сравнить это выражение с предыдущей формулой расчета по титру рабочего раствора, то титр по определяемому веществу можно представить в виде
.
С другой стороны, из формулы расчета массы определяемого вещества через молярную концентрацию эквивалента рабочего раствора следует, что
.
Рассмотренными в данном разделе способами рассчитывается результат и в методе титрования по замещению.