Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Физа 3 итог

.pdf
Скачиваний:
10
Добавлен:
13.04.2022
Размер:
552.66 Кб
Скачать

высоте тона и локализации звука, деятельность этих нейронов лежит в основе ориентировочного рефлекса на неожиданные раздражители.

Благодаря многим разветвлениям афферентных путей на уровне спинного мозга и подкорковых центров обеспечивается многократное взаимодействие афферентных импульсов в пределах одной сенсорной системы, а также взаимодействие м/у различными сенсорными системами (в частности, можно отметить чрезвычайно обширные взаимодействия вестибулярной сенсорной системы со многими восходящими и нисходящими путями).

Особенно широкие возможности для взаимодействия различных сигналов создаются в неспецифической системе мозга, где к одному и тому же нейрону могут сходится (конвергировать) импульсы различного происхождения (от 30000 нейронов) и от разных рецепторов тела. Вследствие этого неспецифическая система играет большую роль в процессах интеграции функций в организме.

25. Характеристика зрительного анализатора. Рецепторный аппарат. Фотохимические процессы в сетчатке при действии света. Восприятие света (Ломоносов, Гельмгольц, Лазарев). Современное представление о восприятии цвета.

Зрительный анализатор включает в себя - периферическую часть (глазное яблоко),

проводящий отдел (зрительные нервы, подкорковые зрительные центры) и корковую

часть анализатора.

Орган зрения - глаз - включает в себя рецепторный аппарат (сетчатку) и оптическую систему, которая фокусирует световые лучи и обеспечивает четкость изображения предметов в сетчатке в уменьшенном и обратном виде.

Сетчатка расположена на задней стенке глазного яблока, ее основная роль -

преобразование света в электрические потенциалы. Сетчатка состоит из 4 основных слоев: пигментный; слой палочек и колбочек (около 110-125 млн. палочек и 6 млн. колбочек); слой биполярных клеток; слой ганглиозных клеток.

Нервные волокна ганглиозных клеток, собираясь, образуют зрительный нерв. На сетчатке (глазном дне) имеются два образования - слепое пятно (выход нерва, фоторецепторов нет) и желтое пятно (палочек нет, а плотность колбочек самая высокая).

Волокна зрительного нерва идут в подкорковую часть зрительного анализатора - наружные коленчатые тела переднего двухолмия, затем в кору ГМ - затылочную долю.

От коры к сетчатке, также идут волокна, обеспечивающие корковый контроль.

Фоторецепторы (колбочки и палочки) обладают разной чувствительностью к цвету и свету: колбочки слабо чувствительны к цвету, колбочки - обеспечивают дневное восприятие света. Палочки - не чувствительны к цвету, но чувствительны к свету (сумеречное зрение).

Электрические явления в зрительном рецепторе. Фотохимические изменения зрительных пигментов палочек и коробочек представляют собой начальное звено в цепи явлений возбуждения зрительных рецепторов.

Когда лучи света попадают на сетчатку: в ней происходит ряд химических превращений, связанных с преобразованием зрительных пигментов. В палочках - родопсин (зрительный пурпур), в колбочках иодопсин. В результате энергия света превращается в электрические сигналы - импульсы. Так, родопсин под влиянием света претерпевает ряд химических изменений - превращается в ретинол (альдегид витамина А) и белковый

41

остаток - опсин. Затем под влиянием фермента редуктазы он переходит в витамин А, который поступает в пигментный слой. В темноте происходит обратная реакция - витамин А восстанавливается, проходя ряд стадий.

Вслед за комплексом фотохимических реакций возникают электрические изменения. При световом раздражении от глаза можно зарегистрировать электроретинограмму, на которой различают 4 волны (a, b, c, d). Волна С - палочковая. Анализ ЭРГ может дать немало информации о состоянии сетчатки.

Медленные колебания электрических потенциалов при световом раздражении (ЭРГ) сопровождаются возникновением потенциалов действия в ганглиозных клетках сетчатки, от которых отходят волокна зрительного нерва. Одна ганглиозная клетка через много биполярных и горизонтальных нейронов связана с тысячами фоторецепторов (около 1 млн.). На 130 млн. палочек и колбочек есть 1 млн. нервных волокон. На нейронах сетчатки может возникать как суммация волн возбуждения, так и их окклюзия. Поскольку нейронам сетчатки свойственны те же самые свойства, что и нервным центрам, это дает основание читать нейроны сетчатки вынесенной на периферию частью ЦН

Восприятие цвета (м.В. Ломоносов, г. Гельмгольц, и.П. Лазарев). Основные формы нарушения цветового зрения. Современное представление о восприятии цвета.

О существовании трехкомпонентного механизма восприятия цветов говорил еще М. В.

Ломоносов. В дальнейшем эта теория была сформулирована в 1801 г. Т. Юнгом и затем

развита Г. Гельмгольцем. Согласно этой теории, в колбочках находятся различные светочувствительные вещества. Одни колбочки содержат вещество, чувствительное к красному цвету, другие — зеленому, третьи — к фиолетовому. Всякий цвет оказывает действие на все три цветоощущающих элемента, но в разной степени. Эти возбуждения

суммируются зрительными нейронами и, дойдя до коры, дают ощущение того или иного

цвета.

Согласно другой теории, предложенной Э. Герингом, в колбочках сетчатки существуют три гипотетических светочувствительных вещества: 1) бело-черное, 2) красно-зеленое и

3) желто-синее. Распад этих веществ под влиянием света приводит к ощущению белого, красного или желтого цвета. Другие световые лучи вызывают синтез этих гипотетических веществ, вследствие чего появляется ощущение черного, зеленого и синего цвета.

Наиболее веские подтверждения в электрофизиологических исследованиях получила

трехкомпонентная теория цветового зрения. В экспериментах на животных с помощью

микроэлектродов отводились импульсы от одиночных ганглиозных клеток сетчатки при освещении ее разными монохроматическими лучами. Оказалось, что электрическая активность в большинстве нейронов возникала при действии лучей любой длины волны в видимой части спектра. Такие элементы сетчатки названы доминаторами. В других же ганглиозных клетках (модуляторах) импульсы возникали лишь при освещении лучами только определенной длины волны. Выявлено 7 модуляторов, оптимально реагирующих на свет с разной длиной волны (от 400 до 600 нм.). Р. Гранит считает, что три компонента цветовосприятия, предполагавшиеся Т. Юнгом и Г. Гельмгольцем, получаются в результате усреднения кривых спектральной чувствительности модуляторов, которые могут быть сгруппированы соответственно трем основным частям спектра: сине-фиолетовой, зеленой и оранжевой.

42

26 Физиологические механизмы аккомодации глаза. Пространственное, монокулярное, бинокулярное зрение. Формирование зрительного образа. Роль правого и левого полушарий в зрительном восприятии. Механизм адаптации зрительного анализатора.

ема аккомодации представлена хрусталиком, который имеет форму двояковыпуклой линзы. вные функции - преломляющая и, следовательно, фокусировка изображения на сетчатке ломляющая сила - 19-33Д). Это достигается путем аккомодации - изменения формы талика. Изменение формы хрусталика происходит за счет расслабления или сокращения арной мышцы, прикрепляющейся к капсуле хрусталика посредством цинновой связки.

Различные части хрусталика преломляют свет неодинаково. Потому изображение может искажаться (сферическая аберрация). С возрастом хрусталик утрачивает свою прозрачность и эластические свойства - сила аккомодации уменьшается и появляется старческая дальнозоркость - пресбиопия. Нарушение аккомодации связано с нарушением питания хрусталика.

Проводниковый и корковый отделы зрительного анализатора. Формирование зрительного образа. Роль правого и левого полушарий в зрительном восприятии. Адаптация зрительного анализатора

Зрительная ceнсорная система состоит из следующих отделов:

1.периферический отдел - это сложный вспомогательный орган — глаз, в котором

находятся фоторецепторы и тела 1-х (биполярных) и 2-х (ганглиозных) нейронов;

2.проводниковый отдел - зрительный нерв (вторая пара черепно-мозговых нервов), представляющий собой волокна 2-ых нейронов и частично перекрещивающийся в хиазме, передает информацию третьим нейронам, часть которых расположена в переднем двухолмии среднего мозга, другая часть — в ядрах промежуточного мозга, так

называемых наружных коленчатых телах;

3.корковый отдел - 4-е нейроны находятся в 17 поле затылочной области коры больших полушарий. Это образование представляет собой первичное (проекционное) поле или ядро анализатора, функцией которого является возникновение ощущений. Рядом с ним

находится вторичное поле или периферия анализатора (18 и 19 поля), функция которого

— опознание и осмысливание зрительных ощущений, что лежит в основе процесса восприятия. Дальнейшая обработка и взаимосвязь зрительной информации с

информацией от других сенсорных систем происходит в ассоциативных задних третичных полях коры — нижнетеменных областях.

Формирование зрительного образа.

Результатом работы зрительной системы является формирование модели окружающего мира. Эти модели у животных, находящихся на разных ступенях эволюции, существенно различаются, так же как и диапазоны воспринимаемых ими сигналов, и «вычислительные» ресурсы зрительных отделов мозга. В модели мира каждого животного должны быть в первую очередь представлены те объекты и события, которые имеют для него жизненно важное значение. Форма, размер, отражательные характеристики объектов, их положение в пространстве относительно друг друга и наблюдателя, степень жесткости, характер движения определяются с достаточной точностью, даже вопреки действию многих мешающих факторов. Чтобы один и тот же объект узнавался при разном освещении, в разных ракурсах, на разных расстояниях от глаз и при разном направлении взора, зрительная система имеет специальные механизмы константности (постоянства) восприятия цвета, размера, формы и

43

положения. Эти механизмы обеспечивают сохранение стабильности видимого мира при изменении освещения и при движениях глаз, головы, туловища.

Последовательность мгновенных оптических отображений внешнего мира на глазном дне (точнее, на растре зрительных рецепторов), перекодируемая в сетчатке в последовательность электрических сигналов, служит лишь входом для дальнейшей обработки в зрительных отделах мозга. Продуктом этой обработки является видимая картина мира. Хотя м/у входными и выходными сигналами имеется определенное соответствие, далеко не всегда правомерно проводить м/у ними прямые аналогии. Так, удивительно живучи утверждения, будто младенцы видят мир перевернутым, а при наблюдении одним глазом мы воспринимаем мир плоским. Первое из этих заблуждений спровоцировано нашими знаниями о том, что оптическая система глаза человека формирует на глазном дне уменьшенное обратное изображение рассматриваемого окружения. Следуя примитивной логике этого высказывания, надо было бы добавить, что младенцы видят мир находящимся внутри своего черепа и размером меньше шарика для настольного тенниса, да к тому же в двух экземплярах — ведь у нас два глаза. Второе заблуждение обусловлено тем обстоятельством, что с геометрической точки зрения одной проекции объекта недостаточно для восстановления его объемной формы. Но ведь и двух проекций, теоретически, недостаточно. Однако аксиомы

геометрии не имеют непосредственного отношения к сущности субъективных моделей

мира. Пространственно-временная структура этих моделей, по-видимому, определена

генетически. Человек (или животное) лишь заполняет данное ему от рождения ощущение пространства объектами, размеры и положение которых он определяет при помощи разнообразных (и не только зрительных) механизмов, в числе которых есть и монокулярные, и бинокулярные. При наблюдении одним глазом человек может получать

представление об объемной форме неподвижных предметов и их взаимном

расположении по глубине на основе изменений аккомодации при переводе взгляда с одного предмета на другой, на основе анализа перспективных трансформаций, светотени, градиентов текстуры, заслонения удаленных объектов ближними и других

особенностей изображений.

Правое полушарие воспринимает зрительный образ целостно, сразу во всех подробностях и значительно легче решает задачу различения предметов и узнавания

визуальных образов, которые трудно описать словами. Оно же создает и предпосылки конкретно-чувственного мышления. Левое полушарие оценивает зрительный образ

расчленено, по частям, аналитически, при этом каждый признак анализируется

раздельно. Легче узнаются знакомые предметы и решаются задачи сходства предметов, зрительные образы лишены конкретных подробностей и имеют высокую степень абстракции; создаются предпосылки логического мышления.

27. Слуховой анализатор. Звукоулавливающий и звукопроводящий аппарат.Рецепторный отдел слухового анализатора.Механизм возникновения рецепторного потенциала в волосковых клетках спинального органа. Особенности проводникового и коркового отделов слухового анализатора (Г. Гельмогольц, Г. Бекеши).

Рецепторный (периферический) отдел слухового анализатора, превращающий энергию звуковых волн в энергию нервного возбуждения, представлен рецепторными волосковыми клетками кортиева органа {орган Корти), находящимися в улитке. Слуховые

44

рецепторы (фонорецепторы) относятся к механорецепторам, являются вторичными и представлены внутренними и наружными волосковыми клетками. У человека приблизительно 3500 внутренних и 20 000 наружных волосковых клеток, которые расположены на основной мембране внутри среднего канала внутреннего уха.Внутреннее ухо (звуковоспринимающий аппарат), а также среднее ухо (звукопередающий аппарат) и наружное ухо (звукоулавливающий аппарат) объединяются в понятие орган слуха.

Наружное ухо (звукоулавливающий аппарат) за счет ушной раковины обеспечивает улавливание звуков, концентрацию их в направлении наружного слухового прохода и усиление интенсивности звуков. Кроме того, структуры наружного уха выполняют защитную функцию, охраняя барабанную перепонку от механических и температурных воздействий внешней среды.

Среднее ухо (звукопроводящий отдел) представлено барабанной полостью, где расположены три слуховые косточки: молоточек, наковальня и стремечко. От наружного слухового прохода среднее ухо отделено барабанной перепонкой. Рукоятка молоточка вплетена в барабанную перепонку, другой его конец сочленен с наковальней, которая, в свою очередь, сочленена со стремечком. Стремечко прилегает к мембране овального окна.. Среднее ухо имеет специальный защитный механизм, представленный двумя

мышцами: мышцей, натягивающей барабанную перепонку, и мышцей, фиксирующей

стремечко.. В барабанной полости поддерживается давление, равное атмосферному,

что очень важно для адекватного восприятия звуков. Эту функцию выполняет евстахиева труба, которая соединяет полость среднего уха с глоткой.

Внутреннее ухо представлено улиткой - спирально закрученным костным каналом, имеющим 2,5 завитка, который разделен основной мембраной и мембраной Рейснера на

три узких части (лестницы). Верхний канал (вестибулярная лестница) начинается от

овального окна и соединяется с нижним каналом (барабанной лестницей) через геликотрему (отверстие в верхушке) и заканчивается круглым окном. Оба канала представляют собой единое целое и заполнены перилимфой, сходной по составу со

спинномозговой жидкостью. м/у верхним и нижним каналами находится средний (средняя лестница). Он изолирован и заполнен эндолимфой. Внутри среднего канала на основной мембране расположен собственно звуковоспринимающий аппарат - орган

Корти (кортиев орган) с рецепторными клетками, представляющий периферический отдел слухового анализатора.

Механизмы слуховой рецепции. При действии звука основная мембрана начинает

колебаться, наиболее длинные волоски рецепторных клеток (стереоцилии) касаются покровной мембраны и несколько наклоняются. Отклонение волоска на несколько градусов приводит к натяжению тончайших вертикальных нитей (микро-фил амент), связывающих м/у собой верхушки соседних волосков данной клетки. Это натяжение чисто механически открывает от 1 до 5 ионных каналов в мембране стереоцилии. Через открытый канал в волосок начинает течь калиевый ионный ток. Сила натяжения нити, необходимая для открывания одного канала, ничтожна, около 2 • 10-13 ньютонов. Еще более удивительным кажется то, что наиболее слабые из ощущаемых человеком звуков растягивают вертикальные нити, связывающие верхушки соседних стереоцилии, на расстояние, вдвое меньшее, чем диаметр атома водорода.

Тот факт, что электрический ответ слухового рецептора достигает максимума уже через 100—500 мкс (микросекунд), означает, что ионные каналы мембраны открываются

45

непосредственно механическим стимулом без участия вторичных внутриклеточных посредников. Это отличает механорецепторы от значительно медленнее работающих фоторецепторов.

Деполяризация пресинаптического окончания волосковой клетки приводит к выходу в синаптическую щель нейромедиатора (глутамата или аспартата). Воздействуя на постсинаптическую мембрану афферентного волокна, медиатор вызывает генерацию в нем возбуждающего постсинаптического потенциала и далее генерацию распространяющихся в нервные центры импульсов.

+Открывания всего нескольких ионных каналов в мембране одной стереоцилии явно мало для возникновения рецепторного потенциала достаточной величины. Важным механизмом усиления сенсорного сигнала на рецепторном уровне слуховой системы является механическое взаимодействие всех стереоцилии (около 100) каждой волосковой клетки. Оказалось, что все стереоцилии одного рецептора связаны м/у собой в пучок тонкими поперечными нитями. Поэтому, когда сгибаются один или несколько более длинных волосков, они тянут за собой все остальные волоски. В результате этого открываются ионные каналы всех волосков, обеспечивая достаточную величину рецепторного потенциала.

Особенности проводникового и коркового отделов слухового анализатора. Теории

восприятия звука (г. Гельмгольц, г. Бекеши).

Проводниковый отдел — первый нейрон проводникового отдела, находящийся в

спиральном узле улитки, получает возбуждение от рецепторов внутреннего уха. Отсюда информация поступает по его волокнам, т. е. по слуховому нерву (входящему в 8 пар черепно-мозговых нервов) ко второму нейрону в продолговатом мозге. После перекреста часть волокон идет к третьему нейрону в заднем двухолмии среднего мозга, а часть к

ядрам промежуточного мозга — внутреннему коленчатому телу;

Корковый отдел — представлен четвертым нейроном, который находится в первичном (проекционном) слуховом поле и височной области коры больших полушарий и обеспечивает возникновение ощущения, а более сложная обработка звуковой

информации происходит в расположенном рядом вторичном слуховом поле, отвечающем за формирование восприятия и опознание информации. Полученные сведения поступают в третичное поле нижнетеменной зоны, где интегрируются с другими

формами информации.

Теории слуха принято делить на две категории: 1) теории периферического анализатора

и 2) теории центрального анализатора.

Исходя из строения периферического слухового аппарата, Гельмгольц предложил свою резонансную теорию слуха, согласно которой отдельные части основной мембраны - «струны» колеблются при действии звуков определенной частоты. Чувствительные клетки кортиева органа воспринимают эти колебания и передают по нерву слуховым центрам. При наличии сложных звуков одновременно происходит колебание нескольких участков. Таким образом, восприятие звуков разных частот происходит в разных участках улитки, а именно, по аналогии с музыкальными инструментами, звуки высокой частоты вызывают колебания коротких волокон у основания улитки, а низкие звуки приводят в колебательные движения длинные волокна у верхушки улитки.

Гельмгольц полагал, что центра слуха достигают уже дифференцированные раздражения, а корковые центры синтезируют полученные импульсы в слуховое ощущение.

46

Теория слуха Бекеши - это теория, объясняющая первичный анализ звуков в улитке сдвигом столба пери — и эндолимфы и деформацией основной мембраны при колебаниях основания стремени, распространяющихся по направлению к верхушке улитки в виде бегущей волны.

28

Двигательный анализатор, его роль в восприятии и оценке положения тела в пространстве и формировании движений.

Строение двигательного анализатора Периферической частью ДА служат внутренние рецепторы органов движения — мышц,

суставов и сухожилий. Они получают раздражения во время движения этих органов и, посылая импульсы в кору полушарий, сообщают о состоянии органов движения и о тех действиях, которые человек совершает с их помощью.

Проводящий отдел Возбуждение, возникшее в рецепторах двигательного анализатора по

центростремительным нервам через задние (чувствительные) корешки проводится в спинной мозг. По восходящим проводящим путям оно передается в кору ГМ. Центральная часть двигательного анализатора — это чувствительно-двигательная зона коры ГМ, а именно передняя центральная извилина.

Существование ДА можно доказать с помощью простого эксперимента. Закройте глаза и

примите любую позу, а затем двигайте или ногой. Не видя этих движений, вы можете

подробно рассказать о них. Существование двигательного анализатора было выяснено в наблюдениях за больными, у которых поражены восходящие пути спинного мозга. У таких людей движения при ходьбе некоординированные, так как нарушена проводящая часть двигательного анализатора.Значение ДАДА имеет важное значение для

выполнения и разучивания движений. Он контролирует правильность и точность

движений. Например, при сгибании руки в локтевом суставе сокращается двуглавая мышца плеча и растягивается трехглавая. Возбуждение, возникшее в рецепторах этих мышц, сигнализирует о том, что одна мышца сокращена, а другая растянута. Рецепторы

трущихся поверхностей локтевого сустава и растянутых сухожилий информируют мозг об амплитуде и быстроте сгибания. Эта сигнализация не только дает возможность человеку ощутить данное движение, но и позволяет коре ГМ проконтролировать

точность и правильность его выполнения. Возбуждение от рецепторов двигательного анализатора поступает в чувствительно-двигательную зону коры. Оттуда идет поток

импульсов к работающим мышцам, обеспечивающий своевременное исправление

выполняемых движений.

ДА играет ведущую роль при разучивании новых движений. Любые движения, которые приобретает человек в течение жизни, являются сложными условными двигательными рефлексами. Умение писать пером, играть на рояле и выполнять сложнейшие комбинации хореографических движений появляется в результате образования этих рефлексов. Они вырабатываются с помощью двигательного анализатора.

В двигательной деятельности человека участвуют и подкорковые центры. Они регулируют мышечный тонус, уточняют координацию движений во время бега, ходьбы и танца, согласуют деятельность внутренних органов с двигательными рефлексами.

29. Тактильный и температурный анализаторы. Классификация тактильных рецепторов, особенности их строения и функции.

47

Тактильный анализатор служит для анализа всех механических влияний, действующих на тело человека (давление, прикосновение, вибрация). Рецепторы, предназначенные для этого, содержатся в коже, в частности, в эпидермисе, дерме и частично в подкожной клетчатке. Концентрация тактильных рецепторов на различных участках тела неодинакова, поэтому чувствительность одних участков выше, например, кожи кончиков пальцев рук, других — ниже.

Выделяют 3 основных вида рецепторов:

1.Рецепторы давления, которые воспринимают силу механического воздействия (рецепторы силы).

2.Рецепторы прикосновения, или датчики скорости - это тельца Мейсснера.

3.Рецепторы вибрации - это датчики ускорения или датчики синусоидального изменения силы. Они реагируют лишь на вторую производную изменения силы - ускорение. Морфологически они представлены тельцами Паччини. Расположены в глубоких слоях дермы.

Температурные рецепторы имеют важное значение для поддержания постоянной температуры тела. В средней полосе России колебание температуры окружающей среды м/у различными областями в течение одного дня может достигать 20-25°C , а на

протяжении всего года — до 70°C (от 35°С ниже нуля — зимой, до 35°C выше нуля —

летом). Без температурной адаптации человек не смог бы выжить. Поэтому очень важны

быстрое и точное восприятие изменений температуры и соответствующая перестройка механизмов теплопродукции и теплоотдачи в зависимости от изменившихся условий. Именно в этом состоит функция температурных рецепторов. Полагают, что существуют две разновидности: одни воспринимают тепло, другие — холод. Рецепторы,

воспринимающие холод, располагаются ближе к поверхности кожи, их количество

больше, чем тепловых, которые и располагаются значительно глубже.Наиболее чувствительна к воздействию температурных раздражителей кожа лица и живота. Кожа ног по сравнению с кожей лица в два раза менее чувствительна к холоду и в четыре — к

теплу. Температурные раздражители помогают ощущать структуру комбинации движений и скорость. Происходит это потому, что при быстром изменении положения частей тела или большой скорости передвижения возникает прохладный ветерок. Он

воспринимается температурными рецепторами как изменение температуры кожи, а осязательными — как прикосновение воздуха.

30. Боль и ее биологическое значение.Понятие о ноцицепции и центральных механизмах боли. Актиноцицептивнаясистема. Нейрохимические механизмы актиноцицепции.

Боль – это сенсорное чувство, которое сопровождает течение очень многих патологических процессов, например, воспаления, аллергии, ишемии, воздействии повреждающих факторов внешней среды, в частности при ожогах. Боль может иметь разное происхождение, она может являться результатом альтерации и повреждения клеток, выделения медиаторов воспаления или вазоактивных веществ в патохимическую стадию аллергических реакций и так далее, но биологическое значение боли состоит в сигнализации о возможной или наступившей опасности.

Следует выделить такие особенности боли как вида чувствительности:1. Носит защитную функцию.2. Не характерно развитие адаптации, к боли нельзя привыкнуть,

48

именно болью обусловлены страданию многих больных при хронических заболеваниях.3. Боль не возникает, как правило, в виде изолированного сенсорного чувства, если речь не идет о слабых болевых ощущениях. Боль, как правило, возникает в виде сенсорной реакции с вегетативным компонентом (реагирует, прежде всего, сердечно-сосудистая система) и эмоциональным компонентом, который может иметь различную направленность, от возбуждения до депрессии.4. Боль также имеет большое значение в связи с тем, что может привести к развитию тяжелых состояний, таких как шок.

Ноцицепция — это нейрофизиологическое понятие, обозначающее восприятие, проведение и центральную обработку сигналов о вредоносных процессах или воздействиях. То есть это физиологический механизм передачи боли, и он не затрагивает описание её эмоциональной составляющей. Важное значение имеет тот факт, что само проведение болевых сигналов в ноцицептивной системе не эквивалентно ощущаемой боли.

Центральный механизм боли заключается в расстройстве функций ЦНС, возникновении психических и эмоциональных нарушений, которые формируют болевое поведение. Работу сложной ноцицептивной системы человека и животных контролирует эндогенная система, подавляющая проведение ноцицептивных сигналов, —

антиноцицептивнаясистема.Активация структур антиноцицептивной системы вызывает

обезболивание у человека и животных. Анальгетический эффект возникает при

стимуляции более чем тридцати структур ЦНС, особенно ядер шва, покрышки, центрального серого вещества и др.м/у структурами антиноцицептивной системы существуют тесные анатомические двусторонние связи, объединяющие отдельные образования и обеспечивающие избирательное включение нейрохимических

механизмов подавления боли в зависимости от места, силы и характера полученного

организмом повреждения.При активации ноцицептивными сигналами структуры антиноцицептивной системы с помощью обратной связи угнетают передачу болевых импульсов. Происходит торможение ноцицептивных нейронов в задних рогах спинного

мозга, РФ, ядрах таламуса.В механизмах развития анальгезии при активации антиноцицептивных структур наибольшее значение имеют опиоидергическая, серотонинерическая, норадренергическая и каннабиноидная системы мозга.

В деятельности антиноцицептивной системы различают несколько механизмов, отличающихся друг от друга по длительности действия и по нейрохимической природе

медиаторов.1. Срочный механизм активируется непосредственно действием болевых

стимулов и реализуется с участием структур нисходящего тормозного контроля. Этот механизм осуществляется через активацию серотонин- и опиоидергических нейронов, входящих в состав серого околоводопроводного вещества и ядер шва, а также адренергических нейронов РФ. Благодаря срочному механизму обеспечивается функция ограничения афферентного ноцицептивного потока на уровне нейронов задних рогов спинного мозга и каудальных отделов ядер тригеминального комплекса. За счет срочного механизма реализуется конкурентная аналгезия, т.е. подавление болевой реакции на стимул в том случае, когда одновременно действует другой, более сильный стимул на другую рецептивную зону.

2. Короткодействующий механизм активируется при кратковременном действии на организм ноцицептивных факторов, центр которого локализуется в гипоталамусе, преимущественно в вентромедиальном ядре. По нейрохимической природе этот

49

механизм адренергический, вовлекающий в активный процесс систему нисходящего тормозного контроля (I уровень антиноцицептивной системы) с его серотонин- и опиоидергическими нейронами. Данный механизм выполняет функцию ограничения восходящего ноцицептивногопотока как на уровне спинного мозга, так и на супраспинальном уровне. Короткодействующий механизм включается также при сочетании действия ноцицептивного и стрессогенного факторов и так же, как и срочный механизм, не имеет периода последействия.

Длительнодействующий механизм активируется при длительном действии на организм ноцигенных факторов, и центром его являются латеральное и супраоптическое ядра гипоталамуса. По нейрохимической природе этот механизм опиоидный. При этом вовлекаются системы нисходящего тормозного контроля, поскольку м/у этими структурами и гипоталамусом имеются хорошо выраженные двусторонние связи. Длительнодействующий механизм имеет хорошо выраженный эффект последействия. Функции этого механизма заключаются в ограничении восходящего ноцицептивного потока на всех уровнях ноцицептивной системы и регуляции активности системы нисходящего тормозного контроля. Данный механизм обеспечивает также выделение ноцицептивнойафферентации из общего потока афферентных возбуждений, их оценку и эмоциональную окраску.

Тонический механизм поддерживает постоянную активность антиноцицептивной

системы. Центры расположены в орбитальной и фронтальной областях коры больших

полушарий ГМ, а также в гипоталамусе. Основными нейрохимическими механизмами являются опиоидные и пептидергические. Функция тонического механизма заключается в постоянном тормозном влиянии на активность ноцицептивной системы на всех уровнях ЦНС даже при отсутствии ноцицептивных воздействий.

31. Вкусовой и обонятельный анализатор. Особенности их строения и функций. Механизмы восприятия вкусовых и обонятельных раздражений.

Физиологическая характеристика вкусового анализатора. Механизм генерирования

рецепторного потенциала при действии вкусовых раздражителей разной модальности. Хеморецепторы вкуса представляют собой вкусовые луковицы, расположенные в эпителии языка, задней стенке глотки и мягкого неба. У детей их количество больше, а с

возрастом — убывает. Микроворсинки рецепторных клеток выступают из луковицы на поверхность языка и реагируют на растворенные в воде вещества. Их сигналы

поступают через волокна лицевого и языко-глоточного нервов (продолговатый мозг) в

таламус и далее в соматосенсорную область коры. Рецепторы разных частей языка воспринимают четыре основных вкуса: горького (задняя часть языка), кислого (края языка), сладкого (передняя часть языка) и соленого (передняя часть и края языка). м/у вкусовыми ощущениями и химическим строением вещества отсутствует строгое соответствие, так как вкусовые ощущения могут изменяться при заболевании, беременности, условно-рефлекторных воздействиях, изменениях аппетита. В формировании вкусовых ощущений участвуют обоняние, тактильная, болевая и температурная чувствительность. Информация вкусовой сенсорной системы используется для организации пищевого поведения, связанного с добыванием, выбором, предпочтением или отверганием пиши, формированием чувства голода, сытости.

50