
- •У. Титце к. Шенк
- •4.7.1. Основная схема
- •5. Полевые транзисторы
- •9.5.1. Основная схема
- •10. Оптоэлектронные приборы
- •11. Линейные и нелинейные аналоговые вычислительные схемы
- •12. Управляемые источники и схемы преобразования полного сопротивления
- •15. Усилители мощности
- •15.4. Комплементарный эмиттерный повторитель по схеме дарлингтона
- •16. Источники питания
- •17. Аналоговые коммутаторы и компараторы
- •18. Генераторы сигналов
- •18.4. Генераторы сигналов специальной формы (функциональные генераторы)
- •19. Комбинационные логические схемы
- •20. Интегральные схемы со структурами последовательностного типа
- •20.4.1. Основная схема
- •21. Микро-эвм
- •22.2.1. Описание во временной области
- •22.2.2. Описание в частотной области
- •25. Измерительные схемы
- •26. Электронные регуляторы
- •Часть I.
- •1. Пояснение применяемых величин
- •Значения времени установления фильтра нижних частот
- •2.1.3. Длительность фронта импульса и частота среза филыра
- •2.2. Фильтр верхних частот
- •Выражение для частоты среза совпадает с соответствующим выражением для фильтра нижних частот:
- •Фильтр верхних частот как элемент rc-связи
- •Фильтр верхних частот как дифференцирующее звено
- •Последовательное соединение нескольких фильтров верхних частот
- •2.3. Компенсированный делитель напряжения
- •2.4. Пассивный полосовой rc-фильтр
- •2.5. Мост вина-робинсона
- •2.6. Двойной т-образный фильтр
- •2.7. Колебательный контур
- •3. Диоды
- •3.1. Характеристики и параметры
- •Динамический режим
- •3.2. Стабилитроны
- •3.3. Варикапы
- •4. Транзистор и схемы на его основе
- •4.1. Характеристики и параметры в режиме малых сигналов
- •4.2. Схема с общим эмиттером
- •4.2.1. Принцип работы
- •Входное и выходное сопротивления
- •4.2.2. Нелинейные искажения
- •4.2.3. Схема с общим эмиттером и отрицательной обратной связью по току
- •Расчет входного сопротивления
- •4.2.4. Отрицательная обратная связь по напряжению
- •4.2.5. Установка рабочей точки
- •Установка рабочей точки с помощью базового тока
- •Установка рабочей точки с помощью отрицательной обратной связи по току
- •4.3. Схема с общей базой
- •4.4. Схема с общим коллектором, эмиттерный повторитель
- •4.5. Транзистор как источник стабильного тока
- •4.5.1. Основная схема
- •4.5.2. Биполярный источник питания
- •4.5.3. Схема «токового зеркала»
- •Тогда получим
- •4.6. Схема дарлингтона
- •Комплементарная схема Дарлингтона
- •4.7. Дифференциальные усилители
- •4.7.1. Основная схема
- •4.7.2. Режим большого сигнала
- •4.7.3. Дифференциальный усилитель с отрицательной обратной связью по току
- •4.7.4. Напряжение разбаланса
- •Дрейф напряжения разбаланса
- •4.8. Измерение некоторых параметров при малом сигнале
- •4.9. Шумы транзистора
- •4.10. Предельные параметры
- •Ряд I (слева направо) то 18, то 5, то 66, то 3; ряд II: транзисторы соответствующей мощности в пластмассовых корпусах
- •5. Полевые транзисторы
- •5.1. Классификация
- •5.2. Характеристики и параметры малых сигналов
- •5.3. Предельные электрические параметры
- •5.4. Основные схемы включения
- •5.4.1. Схема с общим истоком
- •5.4.2. Схема с общим затвором
- •5.4.3. Схема с общим стоком, истоковый повторитель
- •5.5. Полевой транзистор как стабилизатор тока
- •5.6. Дифференциальный усилитель на полевых транзисторах
- •Дрейф рабочей точки
- •5.7. Полевой транзистор в качестве управляемого сопротивления
- •6. Операционный усилитель
- •6.1. Свойства операционного усилителя
- •Входное сопротивление
- •6.2. Принцип отрицательной обратной связи
- •6.3. Неинвертирующий усилитель
- •Входное сопротивление
- •Выходное сопротивление
- •6.4. Инвертирующий усилитель
- •7. Внутренняя структура операционных усилителей
- •7.1. Основные положения
- •7.2. Простейшие схемы операционных усилителей
- •Операционные усилители на полевых транзисторах
- •7.4. Коррекция частотной характеристики
- •7.4.1. Основные положения
- •7.4.2. Полная частотная коррекция
- •Схемная реализация
- •7.4.3. Подстраиваемая частотная коррекция
- •7.4.4. Скорость нарастания
- •Повышение максимального значения скорости нарастания
- •7.4.5. Компенсация емкостной нагрузки
- •7.5. Измерение параметров операционных усилителей
- •Измерение входного тока покоя
- •8. Простейшие переключающие схемы
- •8.1. Транзисторный ключ
- •Динамические свойства
- •8.2. Бистабильные релаксационные схемы
- •8.2.2. Триггер шмитта
- •Триггер Шмитта с эмиттерными связями
- •8.3. Моностабильная релаксационная схема
- •8.4. Нестабильная релаксационная схема
- •9. Базовые логические схемы
- •9.1. Основные логические функции
- •9.2. Составление логических функций
- •9.2.1. Таблица карно
- •9.3. Производные основных логических функций
- •Схемы ттл с диодами Шоттки
- •9.4.7. Комплементарная моп-логика (кмоп)
- •Двунаправленные логические элементы
- •9.4.8. Обзор
- •9.4.9. Специальные схемы выходных каскадов
- •При низком уровне ue выход схемы находится в безразличном состоянии
- •9.5. Интегральные триггеры
- •9.5.1. Основная схема
- •Статический синхронный rs-триггер
- •Статический синхронный d-триггер
- •9.5.2. Триггеры типа m-s (master-slave)
- •9.5.3. Динамический триггер
- •9.6. Полупроводниковые запоминающие устройства
- •Динамические свойства
- •Параметры некоторых распространенных микросхем озу
- •10. Оптоэлектронные приборы
- •10.1. Основные понятия фотометрии
- •10.2. Фоторезистор
- •10.3. Фотодиоды
- •10.4. Фототранзисторы
- •10.5. Светодиоды
- •10.6. Оптроны
- •Часть II. Применения
- •11. Линейные и нелинейные аналоговые вычислительные схемы
- •11.1 Схема суммирования
- •11.2. Схемы вычитания
- •11.3. Биполярное усилительное звено
- •11.4. Схемы интегрирования
- •11.5. Схемы дифференцирования
- •11.6. Решение дифференциальных уравнений
- •11.7. Функциональные преобразователи
- •Решение степенного уравнения вида
- •Применение степенных рядов
- •Дифференциальный усилитель
- •11.8. Аналоговые схемы умножения
- •Генератор треугольного сигнала— разд. 18.4
- •11.9. Преобразование координат
- •12. Управляемые источники и схемы преобразования полного сопротивления
- •12.1. Источники напряжения, управляемые напряжением
- •12.2. Источники напряжения, управляемые током
- •12.3. Источники тока, управляемые напряжением
- •12.4. Источники тока, управляемые током
- •12.5. Преобразователь отрицательного сопротивления (nic)
- •12.6. Гиратор
- •12.7. Циркулятор
- •13. Активные фильтры
- •13.1. Теоретическое описание фильтров нижних частот
- •Фильтр с критическим затуханием: 2-фильтр Бесселя:
- •Фильтр Баттерворта; 4 фильтр Чебышева с неравномерностью 3дБ.
- •13.2. Преобразование нижних частот в верхние
- •13.3. Реализация фильтров нижних и верхних частот первого порядка
- •13.4. Реализация фильтров нижних и верхних частот второго порядка
- •13.5. Реализация фильтров верхних и нижних частот более высокого порядка
- •13.6. Преобразование фильтра нижних частот в полосовой фильтр
- •13.7. Реализация полосовых фильтров второго порядка
- •13.8. Преобразование фильтров нижних частот в заграждающие полосовые фильтры
- •13.9. Реализация заграждающих. Фильтров второго порядка
- •13.10. Фазовый фильтр
- •13.11. Перестраиваемый универсальный фильтр
- •14. Широкополосные усилители
- •14.1. Зависимость коэффициента усиления по току от частоты
- •14.2. Влияние внутренних емкостей транзистора и емкостей монтажа
- •14.3. Каскодная схема
- •14.4. Дифференциальный усилитель как широкополосный усилитель
- •14.5. Симметричный широкополосный усилитель
- •14.6. Широкополосный повторитель напряжения
- •14.7. Широкополосный операционный усилитель
- •15. Усилители мощности
- •15.1. Эмоттерный повторитель как усилитель мощности
- •15.2. Комплементарный эмиттерный повторитель
- •15.3. Схемы ограничения тока
- •15.4. Комплементарный эмиттерный повторитель по схеме дарлингтона
- •15.5. Расчет мощного оконечного каскада
- •15.6. Схемы предварительных усилителей напряжения
- •15.7. Повышение нагрузочной способности интегральных операционных усилителей
- •16. Источники питания
- •16.1. Свойства сетевых трансформаторов
- •16.2 Выпрямители
- •Из соотношения (16.8) определим сначала
- •16.3. Последовательная стабилизация напряжения
- •Ограничение выходного тока
- •Повышение выходного тока стабилизатора
- •Стабилизация отрицательных напряжений
- •16.4. Получение опорного напряжения
- •Полевой транзистор как источник опорного напряжения
- •I кремниевый диод 2 два последовательно включенных кремниевых диода; з светодиод красного свечения;
- •5 Светодиод желтого свечения.
- •16.5. Импульсные регуляторы напряжения
- •Импульсный стабилизатор с повышением напряжения
- •Импульсный стабилизатор с инвертированием напряжения
- •17. Аналоговые коммутаторы и компараторы
- •17.1. Принцип действия
- •17.2. Электронные коммутаторы
- •Параллельный коммутатор
- •Последовательный коммутатор
- •Последовательно-параллельный коммутатор
- •17.3. Аналоговые коммутаторы на базе операционных усилителей
- •17.4. Аналоговые коммутаторы с памятью
- •Аналоговый коммутатор с памятью, выполненный на базе интегратора
- •17.5. Компараторы
- •17.6. Триггер шмитта
- •18. Генераторы сигналов
- •18.2. Кварцевые генераторы
- •18.3. Синусоидальные lс-генераторы
- •18.4. Генераторы сигналов специальной формы (функциональные генераторы)
- •Изменение скважности выходного напряжения
- •18.5. Мультивибраторы
- •Мультивибратор на базе прецизионного триггера Шмитта
- •Для времени, в течение которого транзистор открыт, получим выражение
- •19. Комбинационные логические схемы
- •19.1. Преобразователи кодов
- •Применение дешифраторов для программного управления
- •Преобразование кода «I из п» в двоичный
- •19.2. Мультиплексор и демультиплексор
- •Демультиплексор
- •19.3. Комбинационное устройство сдвига
- •Типы ис
- •19.4. Компараторы
- •Типы ис
- •19.5. Сумматоры
- •Определение переполнения
- •19.6. Умножители
- •19.7. Цифровые функциональные преобразователи
- •20. Интегральные схемы со структурами последовательностного типа
- •20.1. Двоичные счетчики
- •Счетчик с входами прямого и обратного счета
- •Устранение состязаний
- •20.2. Двоично-десятичный счетчик в коде 8421
- •Синхронный двоично-десятичный реверсивный счетчик
- •20.3. Счетчик с предварительной установкой
- •20.4. Регистры сдвига
- •20.4.1. Основная схема
- •20.5. Получение псевдослучайных последовательностей
- •20.6. Первоначальная обработка асинхронного сигнала
- •20.7. Систематический синтез последовательностньк схем
- •Входной мультиплексор
- •21. Микро-эвм
- •21.1. Основная структура микро-эвм
- •21.2. Принцип действия микропроцессора
- •21.3. Набор команд
- •Безусловные переходы
- •Маска прерываний
- •21.4. Отладочные средства
- •Язык ассемблера
- •21.5. Обзор микропроцессоров различного типа
- •21.6. Модульное построение микро-эвм
- •Микромощные запоминающие устройства
- •21.7. Периферийные устройства
- •Адаптер интерфейса периферийных устройств
- •Передача сигналов телетайпа
- •21.8. Минимальные система
- •22. Цифровые фильтры
- •22.1. Теорема о дискретизации (теорема о выборках)
- •Восстановление аналогового сигнала
- •22.2. Цифровая функция передачи фильтра
- •22.2.1. Описание во временной области
- •22.2.2. Описание в частотной области
- •22.3. Билинейное преобразование
- •22.4. Реализация цифровых фильтров
- •Простой пример реализации цифрового фильтра
- •Последовательная обработка сигнала
- •23. Передача данных и индикация
- •23.1. Соединительные линии
- •23.2. Защита данных
- •23.3. Статические цифровые индикаторы
- •23.4. Мультиплексные индикаторы
- •24. Цифро-аналоговые и аналого-цифровые преобразователи
- •24.1. Схемотехнические принципы ца-преобразователей
- •24.2. Построение ца-преобразователей с электронными ключами
- •Дифференциальный усилитель как токовый ключ
- •24.4. Основные принципы ац-преобразования
- •24.5. Точность ац-преобразоватю1ей
- •24.6. Построение ац-преобразователей
- •Компенсационный метод
- •Метод пилообразного напряжения
- •Метод двойного интегрирования
- •Автоматическая корректировка нуля
- •25. Измерительные схемы
- •25.1. Измерение напряжений
- •Увеличение диапазона управляемого напряжения
- •25.2. Измерение тока
- •Величина тока, вытекающего через точку 2, определяется соотношением
- •25.3. Измерительный выпрямитель
- •Двухполупериодный выпрямитель с заземленным выходом
- •Широкополосный Двухполупериодный выпрямитель
- •Измерение «истинного» эффективного значения
- •Термическое преобразование
- •Измерение мгновенных пиковых значений
- •26. Электронные регуляторы
- •26.1. Основные положения
- •26.2. Типы регуляторов
- •26.3. Управление нелинейными объектами
- •26.4. Отслеживающая синхронизация (автоподсгройка)
- •Динамическая характеристика
- •Расчет регулятора
11.3. Биполярное усилительное звено
Схема на рис. 11.5 служит для умножения входного напряжения на постоянную величину, значение которой в диапазоне ± n может быть задано с помощью потенциометра R2. Если этот потенциометр находится в крайнем правом положении (по схеме), то параметр q == 0 и схема работает как инвертирующий усилитель с коэффициентом усиления А = —n. Номинал резистора R1/(n — 1) в этом случае не играет никакой роли, поскольку на нем нет падения напряжения.
Рис. 11.5. Биполярное усилительное звено.
При q = 1 все входное напряжение Ue поступает на неинвертирующий вход операционного усилителя. При этом падение напряжения на резисторе R1/n равно нулю и схема работает в режиме неинвертирующего усилителя с коэффициентом усиления, равным n:
В промежуточных положениях движка потенциометра R2 коэффициент усиления звена определяется соотношением
Этот коэффициент линейно зависит от q и поэтому может быть удобно реализован с помощью точного многооборотного потенциометра. Величина n определяет область изменения коэффициента передачи звена. Наименьшее возможное значение n есть 1. В этом случае сопротивление R1/(n — 1) становится ненужным.
11.4. Схемы интегрирования
Наиболее важное значение для аналоговых вычислителей имеет применение операционных усилителей для реализации операций интегрирования. В общем случае интегратор описывается выражением
11.4.1. ИНВЕРТИРУЮЩИЙ ИНТЕГРАТОР
Интегратор на рис. 11.6 построен на основе инвертирующего усилителя, в котором резистор обратной связи RN заменен конденсатором С. В этом случае выходное напряжение описывается выражением
где Q0- величина заряда, которая была на конденсаторе к моменту начала интегрирования (t = 0). Учитывая, что Iс = — Ue/R, можно записать
Постоянный член Uао определяет начальное условие интегрирования: Uaо = Ua(t = 0) =Qo/C. С помощью специальных мер можно реализовать любые начальные условия.
Рассмотрим два особых случая. Если входное напряжение Ue постоянно, то изменение выходного сигнала описывается формулой
т. е. выходной сигнал линейно возрастает со временем. Поэтому рассмотренная схема оказывается пригодной для формирования пилообразного напряжения.
Рис. 11.6. Инвертирующий интегратор.
Если входной сигнал представляет собой переменное напряжение, изменяющееся по косинусоидальному закону, т.е. ue = Ue cos wt, то формула для выходного напряжения будет иметь следующий вид:
Как видно из этого выражения, амплитуда выходного сигнала обратно пропорциональна круговой частоте w. Амплитудно-частотная характеристика в логарифмическом масштабе имеет вид прямой с наклоном — 6 дБ на октаву. Это является простым критерием, с помощью которого можно определить, является ли схема интегратором.
Такая амплитудно-частотная характеристика интегратора может быть получена непосредственно при использовании символического представления реактивных сопротивлений в виде комплексных чисел:
Отсюда можно получить соотношение для расчета амплитуды выходного сигнала:
Оценивая стабильность схемы, следует отметить, что в противоположность ранее рассмотренным схемам отрицательная обратная связь в этом случае вызывает фазовый сдвиг, т.е. коэффициент обратной связи будет комплексным:
Для высоких частот k 1 и его фазовый сдвиг будет нулевым. В этой частотной области к схеме предъявляются те же требования, что и к инвертирующему усилителю с отрицательной обратной связью (см. гл. 7).
Рис. 11.7. Частотная характеристика коэффициента усиления цепи обратной связи g.
Поэтому здесь также следует ввести коррекцию частотной характеристики. Для этого, как правило, используют усилитель с внутренней коррекцией, включенный по схеме интегратора.
Типичная частотная характеристика, необходимая для реализации операции интегрирования, приведена на рис. 11.7. Постоянная интегрирования = RС принята равной 100 мкс. Из рис. 11.7 видно, что при этом максимальное усиление цепи обратной связи составит | g | = | kAD = 600. т.е. будет обеспечена точность интегрирования 1/g = 0,2%. В отличие от инвертирующего усилителя эта точность уменьшается не только для высоких, но и для низких частот.
При использовании реального операционного усилителя следует учитывать входной ток Iв при отсутствии сигнала и смещение нуля усилителя (наличие напряжения Uо), поскольку влияние этих параметров увеличивается со временем. При установке нулевого входного напряжения Ue через конденсатор будет течь ток, обусловленный наличием указанных источников погрешностей:
Вследствие этого будет изменяться выходное напряжение:
При токе IB, равном 1 мкА, выходное напряжение будет увеличиваться на 1 В каждую секунду, если С == 1 мкФ. Из уравнения (11.10) следует, что при заданной постоянной времени вклад входного тока при отсутствии сигнала будет тем меньше, чем большее значение емкости С используется в интеграторе. Вклад Uо остается постоянным. Однако величина емкости конденсатора С не может быть выбрана произвольно большой. Поэтому значение его емкости следует выбирать так, чтобы влияние IB не превысило влияние Uо. Для этого необходимо, чтобы выполнялось условие
Если нужно с помощью конденсатора емкостью 1 мкФ получить постоянную интегрирования , равную 1 с, то необходимо использовать операционный усилитель, напряжение Uо которого не должно превышать 1 мВ, а входной ток при отсутствии сигнала должен быть не более
Рис. 11.8. Интегратор с компенсацией тока покоя.
Операционный усилитель с биполярными транзисторами на входе вряд ли будет иметь такое низкое значение тока при отсутствии сигнала. Поэтому остается единственный выход - компенсировать этот ток (рис. 11,8). Величина сопротивления R1 должна быть того же порядка, что и сопротивление R. Падение напряжения на этом сопротивлении будет равно RIB. Если Ue = 0, то вследствие того что VN = Vp, через сопротивление R будет течь ток
При этом ток через конденсатор С будет равен нулю. Теперь остается скомпенсировать таким же образом небольшой сдвиг входных токов, соответствующий сдвигу входного напряжения, с помощью незначительного изменения сопротивления R1. Нескомпенсированным остается лишь дрейф сдвига входных токов, который для операционных усилителей на биполярных транзисторах может быть достаточно большим. Поэтому лучше всего применить операционный усилитель с полевыми транзисторами на входе, для которого входной ток при отсутствии сигнала настолько мал, что нет необходимости в компенсации.
Еще один источник погрешности интегратора- ток утечки конденсатора обратной связи. У электролитических конденсаторов ток утечки порядка микроампер, поэтому их использование в интеграторах недопустимо. Можно рекомендовать для этих целей металлобумажные конденсаторы, однако их использование при емкости свыше 10 мкФ крайне неудобно.
11.4.2. ЗАДАНИЕ НАЧАЛЬНЫХ УСЛОВИЙ
Интегратор только тогда удобен, когда напряжение Ua(t = 0) на его выходе можно задавать независимо от входного напряжения. Это можно получить с помощью дополнительных цепей, показанных на схеме рис. 11.9. Схема позволяет останавливать процесс интегрирования и задавать необходимые начальные условия.
Когда ключ S1 замкнут, а S2 разомкнут, эта схема работает так же, как цепь, изображенная на рис. 11.6: интегрируется напряжение U1. Если же теперь ключ S1 разомкнуть, то зарядный ток при идеальном интеграторе будет равен нулю, а выходное напряжение сохранит значение, соответствующее моменту выключения. Этот режим используется при прерывании интегрирования, когда на выходе интегратора необходимо поддерживать постоянное значение напряжения. Для задания начальных условий следует разомкнуть
Рис. 11.9. Интегратор с тремя режимами работы: интегрированием, выдержкой и заданием начальных условий.
ключ S1 и замкнуть ключ S2. В этом режиме интегратор работает как инвертирующий усилитель с выходным напряжением
Это напряжение устанавливается, однако, с определенной задержкой, величина которой определяется постоянной времени RNC.
На рис. 11.10 приведена схема интегратора с электронной реализацией переключателей режимов работы. Полевые транзисторы T1 и Т2 выполняют роль ключей S1 и S2 на схеме рис. 11.9. Транзисторы будут открыты при наличии соответствующих управляющих напряжений, больших нуля. Если управляющие напряжения отрицательны, транзисторы будут, заперты. Более подробно функции переключателей на полевых транзисторах, а также роль диодов D1 — D6, будут описаны в гл. 17.
Повторитель ОУ 2 предназначен для уменьшении постоянной времени установки начальных значений интегратора: вместо RNC она будет равна гораздо меньшему значению RDSоткрС.
Рис. 11.10. Интегратор с электронным управлением.
11.4.3. СУММИРУЮЩИЙ ИНТЕГРАТОР
Подобно тому как на основе инвертирующего усилителя был реализован суммирующий усилитель, из простого интегратора можно сделать суммирующий (рис. 11.11). Приведенное выражение для
Рис. 11.11. Суммирующий интегратор.
выходного напряжения непосредственно следует из правила узлов, примененного к точке суммирования.
11.4.4. НЕИНВЕРТИРУЮЩИЙ ИНТЕГРАТОР
Для интегрирования без изменения знака к рассмотренному выше интегратору можно добавить инвертирующий усилитель. Схема другого варианта неинвертирующего интегратора показана на рис. 11.12. Схема в принципе состоит из простого RС- фильтра нижних частот, который используется в качестве интегрирующей цепочки, и включенного параллельно ей преобразователя с внутренним отрицательным сопротивлением, равным - R (см. гл. 12). Для определения выходного напряжения воспользуемся правилом узлов для Р- входа операционного усилителя:
Если Vp = VN = 1/2Ua, то в результате получим
Следует принять во внимание, что источник входного напряжения должен обладать очень низким внутренним сопротивлением, чтобы не нарушать режима работы преобразователя с отрицательным сопротивлением (NIC).
Рис. 11.12. Неинвертирующий интегратор.
При компенсации потерь с помощью такого преобразователя используются разности больших величин. Поэтому эта схема не обеспечивает такую же точность, как интегратор на рис. 11.6.