
- •У. Титце к. Шенк
- •4.7.1. Основная схема
- •5. Полевые транзисторы
- •9.5.1. Основная схема
- •10. Оптоэлектронные приборы
- •11. Линейные и нелинейные аналоговые вычислительные схемы
- •12. Управляемые источники и схемы преобразования полного сопротивления
- •15. Усилители мощности
- •15.4. Комплементарный эмиттерный повторитель по схеме дарлингтона
- •16. Источники питания
- •17. Аналоговые коммутаторы и компараторы
- •18. Генераторы сигналов
- •18.4. Генераторы сигналов специальной формы (функциональные генераторы)
- •19. Комбинационные логические схемы
- •20. Интегральные схемы со структурами последовательностного типа
- •20.4.1. Основная схема
- •21. Микро-эвм
- •22.2.1. Описание во временной области
- •22.2.2. Описание в частотной области
- •25. Измерительные схемы
- •26. Электронные регуляторы
- •Часть I.
- •1. Пояснение применяемых величин
- •Значения времени установления фильтра нижних частот
- •2.1.3. Длительность фронта импульса и частота среза филыра
- •2.2. Фильтр верхних частот
- •Выражение для частоты среза совпадает с соответствующим выражением для фильтра нижних частот:
- •Фильтр верхних частот как элемент rc-связи
- •Фильтр верхних частот как дифференцирующее звено
- •Последовательное соединение нескольких фильтров верхних частот
- •2.3. Компенсированный делитель напряжения
- •2.4. Пассивный полосовой rc-фильтр
- •2.5. Мост вина-робинсона
- •2.6. Двойной т-образный фильтр
- •2.7. Колебательный контур
- •3. Диоды
- •3.1. Характеристики и параметры
- •Динамический режим
- •3.2. Стабилитроны
- •3.3. Варикапы
- •4. Транзистор и схемы на его основе
- •4.1. Характеристики и параметры в режиме малых сигналов
- •4.2. Схема с общим эмиттером
- •4.2.1. Принцип работы
- •Входное и выходное сопротивления
- •4.2.2. Нелинейные искажения
- •4.2.3. Схема с общим эмиттером и отрицательной обратной связью по току
- •Расчет входного сопротивления
- •4.2.4. Отрицательная обратная связь по напряжению
- •4.2.5. Установка рабочей точки
- •Установка рабочей точки с помощью базового тока
- •Установка рабочей точки с помощью отрицательной обратной связи по току
- •4.3. Схема с общей базой
- •4.4. Схема с общим коллектором, эмиттерный повторитель
- •4.5. Транзистор как источник стабильного тока
- •4.5.1. Основная схема
- •4.5.2. Биполярный источник питания
- •4.5.3. Схема «токового зеркала»
- •Тогда получим
- •4.6. Схема дарлингтона
- •Комплементарная схема Дарлингтона
- •4.7. Дифференциальные усилители
- •4.7.1. Основная схема
- •4.7.2. Режим большого сигнала
- •4.7.3. Дифференциальный усилитель с отрицательной обратной связью по току
- •4.7.4. Напряжение разбаланса
- •Дрейф напряжения разбаланса
- •4.8. Измерение некоторых параметров при малом сигнале
- •4.9. Шумы транзистора
- •4.10. Предельные параметры
- •Ряд I (слева направо) то 18, то 5, то 66, то 3; ряд II: транзисторы соответствующей мощности в пластмассовых корпусах
- •5. Полевые транзисторы
- •5.1. Классификация
- •5.2. Характеристики и параметры малых сигналов
- •5.3. Предельные электрические параметры
- •5.4. Основные схемы включения
- •5.4.1. Схема с общим истоком
- •5.4.2. Схема с общим затвором
- •5.4.3. Схема с общим стоком, истоковый повторитель
- •5.5. Полевой транзистор как стабилизатор тока
- •5.6. Дифференциальный усилитель на полевых транзисторах
- •Дрейф рабочей точки
- •5.7. Полевой транзистор в качестве управляемого сопротивления
- •6. Операционный усилитель
- •6.1. Свойства операционного усилителя
- •Входное сопротивление
- •6.2. Принцип отрицательной обратной связи
- •6.3. Неинвертирующий усилитель
- •Входное сопротивление
- •Выходное сопротивление
- •6.4. Инвертирующий усилитель
- •7. Внутренняя структура операционных усилителей
- •7.1. Основные положения
- •7.2. Простейшие схемы операционных усилителей
- •Операционные усилители на полевых транзисторах
- •7.4. Коррекция частотной характеристики
- •7.4.1. Основные положения
- •7.4.2. Полная частотная коррекция
- •Схемная реализация
- •7.4.3. Подстраиваемая частотная коррекция
- •7.4.4. Скорость нарастания
- •Повышение максимального значения скорости нарастания
- •7.4.5. Компенсация емкостной нагрузки
- •7.5. Измерение параметров операционных усилителей
- •Измерение входного тока покоя
- •8. Простейшие переключающие схемы
- •8.1. Транзисторный ключ
- •Динамические свойства
- •8.2. Бистабильные релаксационные схемы
- •8.2.2. Триггер шмитта
- •Триггер Шмитта с эмиттерными связями
- •8.3. Моностабильная релаксационная схема
- •8.4. Нестабильная релаксационная схема
- •9. Базовые логические схемы
- •9.1. Основные логические функции
- •9.2. Составление логических функций
- •9.2.1. Таблица карно
- •9.3. Производные основных логических функций
- •Схемы ттл с диодами Шоттки
- •9.4.7. Комплементарная моп-логика (кмоп)
- •Двунаправленные логические элементы
- •9.4.8. Обзор
- •9.4.9. Специальные схемы выходных каскадов
- •При низком уровне ue выход схемы находится в безразличном состоянии
- •9.5. Интегральные триггеры
- •9.5.1. Основная схема
- •Статический синхронный rs-триггер
- •Статический синхронный d-триггер
- •9.5.2. Триггеры типа m-s (master-slave)
- •9.5.3. Динамический триггер
- •9.6. Полупроводниковые запоминающие устройства
- •Динамические свойства
- •Параметры некоторых распространенных микросхем озу
- •10. Оптоэлектронные приборы
- •10.1. Основные понятия фотометрии
- •10.2. Фоторезистор
- •10.3. Фотодиоды
- •10.4. Фототранзисторы
- •10.5. Светодиоды
- •10.6. Оптроны
- •Часть II. Применения
- •11. Линейные и нелинейные аналоговые вычислительные схемы
- •11.1 Схема суммирования
- •11.2. Схемы вычитания
- •11.3. Биполярное усилительное звено
- •11.4. Схемы интегрирования
- •11.5. Схемы дифференцирования
- •11.6. Решение дифференциальных уравнений
- •11.7. Функциональные преобразователи
- •Решение степенного уравнения вида
- •Применение степенных рядов
- •Дифференциальный усилитель
- •11.8. Аналоговые схемы умножения
- •Генератор треугольного сигнала— разд. 18.4
- •11.9. Преобразование координат
- •12. Управляемые источники и схемы преобразования полного сопротивления
- •12.1. Источники напряжения, управляемые напряжением
- •12.2. Источники напряжения, управляемые током
- •12.3. Источники тока, управляемые напряжением
- •12.4. Источники тока, управляемые током
- •12.5. Преобразователь отрицательного сопротивления (nic)
- •12.6. Гиратор
- •12.7. Циркулятор
- •13. Активные фильтры
- •13.1. Теоретическое описание фильтров нижних частот
- •Фильтр с критическим затуханием: 2-фильтр Бесселя:
- •Фильтр Баттерворта; 4 фильтр Чебышева с неравномерностью 3дБ.
- •13.2. Преобразование нижних частот в верхние
- •13.3. Реализация фильтров нижних и верхних частот первого порядка
- •13.4. Реализация фильтров нижних и верхних частот второго порядка
- •13.5. Реализация фильтров верхних и нижних частот более высокого порядка
- •13.6. Преобразование фильтра нижних частот в полосовой фильтр
- •13.7. Реализация полосовых фильтров второго порядка
- •13.8. Преобразование фильтров нижних частот в заграждающие полосовые фильтры
- •13.9. Реализация заграждающих. Фильтров второго порядка
- •13.10. Фазовый фильтр
- •13.11. Перестраиваемый универсальный фильтр
- •14. Широкополосные усилители
- •14.1. Зависимость коэффициента усиления по току от частоты
- •14.2. Влияние внутренних емкостей транзистора и емкостей монтажа
- •14.3. Каскодная схема
- •14.4. Дифференциальный усилитель как широкополосный усилитель
- •14.5. Симметричный широкополосный усилитель
- •14.6. Широкополосный повторитель напряжения
- •14.7. Широкополосный операционный усилитель
- •15. Усилители мощности
- •15.1. Эмоттерный повторитель как усилитель мощности
- •15.2. Комплементарный эмиттерный повторитель
- •15.3. Схемы ограничения тока
- •15.4. Комплементарный эмиттерный повторитель по схеме дарлингтона
- •15.5. Расчет мощного оконечного каскада
- •15.6. Схемы предварительных усилителей напряжения
- •15.7. Повышение нагрузочной способности интегральных операционных усилителей
- •16. Источники питания
- •16.1. Свойства сетевых трансформаторов
- •16.2 Выпрямители
- •Из соотношения (16.8) определим сначала
- •16.3. Последовательная стабилизация напряжения
- •Ограничение выходного тока
- •Повышение выходного тока стабилизатора
- •Стабилизация отрицательных напряжений
- •16.4. Получение опорного напряжения
- •Полевой транзистор как источник опорного напряжения
- •I кремниевый диод 2 два последовательно включенных кремниевых диода; з светодиод красного свечения;
- •5 Светодиод желтого свечения.
- •16.5. Импульсные регуляторы напряжения
- •Импульсный стабилизатор с повышением напряжения
- •Импульсный стабилизатор с инвертированием напряжения
- •17. Аналоговые коммутаторы и компараторы
- •17.1. Принцип действия
- •17.2. Электронные коммутаторы
- •Параллельный коммутатор
- •Последовательный коммутатор
- •Последовательно-параллельный коммутатор
- •17.3. Аналоговые коммутаторы на базе операционных усилителей
- •17.4. Аналоговые коммутаторы с памятью
- •Аналоговый коммутатор с памятью, выполненный на базе интегратора
- •17.5. Компараторы
- •17.6. Триггер шмитта
- •18. Генераторы сигналов
- •18.2. Кварцевые генераторы
- •18.3. Синусоидальные lс-генераторы
- •18.4. Генераторы сигналов специальной формы (функциональные генераторы)
- •Изменение скважности выходного напряжения
- •18.5. Мультивибраторы
- •Мультивибратор на базе прецизионного триггера Шмитта
- •Для времени, в течение которого транзистор открыт, получим выражение
- •19. Комбинационные логические схемы
- •19.1. Преобразователи кодов
- •Применение дешифраторов для программного управления
- •Преобразование кода «I из п» в двоичный
- •19.2. Мультиплексор и демультиплексор
- •Демультиплексор
- •19.3. Комбинационное устройство сдвига
- •Типы ис
- •19.4. Компараторы
- •Типы ис
- •19.5. Сумматоры
- •Определение переполнения
- •19.6. Умножители
- •19.7. Цифровые функциональные преобразователи
- •20. Интегральные схемы со структурами последовательностного типа
- •20.1. Двоичные счетчики
- •Счетчик с входами прямого и обратного счета
- •Устранение состязаний
- •20.2. Двоично-десятичный счетчик в коде 8421
- •Синхронный двоично-десятичный реверсивный счетчик
- •20.3. Счетчик с предварительной установкой
- •20.4. Регистры сдвига
- •20.4.1. Основная схема
- •20.5. Получение псевдослучайных последовательностей
- •20.6. Первоначальная обработка асинхронного сигнала
- •20.7. Систематический синтез последовательностньк схем
- •Входной мультиплексор
- •21. Микро-эвм
- •21.1. Основная структура микро-эвм
- •21.2. Принцип действия микропроцессора
- •21.3. Набор команд
- •Безусловные переходы
- •Маска прерываний
- •21.4. Отладочные средства
- •Язык ассемблера
- •21.5. Обзор микропроцессоров различного типа
- •21.6. Модульное построение микро-эвм
- •Микромощные запоминающие устройства
- •21.7. Периферийные устройства
- •Адаптер интерфейса периферийных устройств
- •Передача сигналов телетайпа
- •21.8. Минимальные система
- •22. Цифровые фильтры
- •22.1. Теорема о дискретизации (теорема о выборках)
- •Восстановление аналогового сигнала
- •22.2. Цифровая функция передачи фильтра
- •22.2.1. Описание во временной области
- •22.2.2. Описание в частотной области
- •22.3. Билинейное преобразование
- •22.4. Реализация цифровых фильтров
- •Простой пример реализации цифрового фильтра
- •Последовательная обработка сигнала
- •23. Передача данных и индикация
- •23.1. Соединительные линии
- •23.2. Защита данных
- •23.3. Статические цифровые индикаторы
- •23.4. Мультиплексные индикаторы
- •24. Цифро-аналоговые и аналого-цифровые преобразователи
- •24.1. Схемотехнические принципы ца-преобразователей
- •24.2. Построение ца-преобразователей с электронными ключами
- •Дифференциальный усилитель как токовый ключ
- •24.4. Основные принципы ац-преобразования
- •24.5. Точность ац-преобразоватю1ей
- •24.6. Построение ац-преобразователей
- •Компенсационный метод
- •Метод пилообразного напряжения
- •Метод двойного интегрирования
- •Автоматическая корректировка нуля
- •25. Измерительные схемы
- •25.1. Измерение напряжений
- •Увеличение диапазона управляемого напряжения
- •25.2. Измерение тока
- •Величина тока, вытекающего через точку 2, определяется соотношением
- •25.3. Измерительный выпрямитель
- •Двухполупериодный выпрямитель с заземленным выходом
- •Широкополосный Двухполупериодный выпрямитель
- •Измерение «истинного» эффективного значения
- •Термическое преобразование
- •Измерение мгновенных пиковых значений
- •26. Электронные регуляторы
- •26.1. Основные положения
- •26.2. Типы регуляторов
- •26.3. Управление нелинейными объектами
- •26.4. Отслеживающая синхронизация (автоподсгройка)
- •Динамическая характеристика
- •Расчет регулятора
Динамические свойства
Чтобы обеспечить нормальное функционирование ОЗУ, следует выполнить некоторые временные соотношения между входными сигналами.
Рис. 9.40. Временная диаграмма процесса записи.
На рис. 9.40 показана временная диаграмма процесса записи информации. Для предотвращения записи информации в неправильно выбранную ячейку импульс разрешения записи следует подавать вслед за адресом только по истечении определенного времени. Это время называется временем дешифрирования адреса tA (Address Setup Time). Для того чтобы обеспечивалась надежная запись в выбранную ячейку, длительность импульса разрешения записи не должна быть ниже минимального значения tW (Data Write Time). В случае значительного числа микросхем ОЗУ информация на входе должна сохраняться еще некоторое время tH (Data Hold Time) после окончания импульса записи. Сумма этих времен называется длительностью цикла записи (Write Cycle Time).
Процесс чтения информации представлен на рис. 9.41.
Рис. 9.41. Временная диаграмма процесса чтения. (Сигнал WE = 0;
После установки адреса достоверная информация появится через интервал времени tR. Это время называется временем доступа при чтении (Read Access Time) или просто временем доступа.
Параметры некоторых широко распространенных микросхем ОЗУ, выполненных как по биполярной, так и МОП-технологии, приведены в табл. 9.17.
Таблица 9.17
Параметры некоторых распространенных микросхем озу
9.6.2. ПОСТОЯННЫЕ ЗАПОМИНАЮЩИЕ УСТРОЙСТВА (ПЗУ)
Запоминающие устройства, в которых информация записывается при их изготовлении, называют постоянными запоминающими устройствами (Read Only Memory-ROM). Их принципиальная схема представлена на рис. 9.42.
Рис 9.42 Внутреннее строение микросхемы ПЗУ емкостью 16 бит
Дешифраторы адреса здесь ничем не отличаются от используемых в ОЗУ (рис 9.38). Запись каждого бита информации производится введением или разрушением контакта между выходом соответствующего элемента И-НЕ и общей шиной d, причем логической единице соответствует наличие такого контакта, а нулю его отсутствие Для того чтобы реализовалась связь «монтажное И», элементы И-НЕ должны иметь выход с открытым коллектором. Открыт только выходной транзистор той ячейки, к которой мы обращаемся, тогда как все остальные заперты. Если этот транзистор подключен к информационной шине, получается d = 0, в противном случае d = 1
Таблица 9.18
Пример таблицы программирования для ПЗУ на 32 слова по 8 бит
Очевидно, что строение запоминающей ячейки ПЗУ намного проще, чем ОЗУ. Поэтому на той же площади кристалла можно записать больший объем информации. Еще одно преимущество состоит в том, что записанная в ПЗУ информация сохраняется при отключении питания.
Постоянные запоминающие устройства изготавливаются для выполнения определенных, стандартных для цифровой техники операций Они используются, например, в знакогенераторах или преобразователях кода. В случае заказа большой серии микросхем они программируются по желанию заказчика при изготовлении Так как программирование в процессе производства микросхем осуществляется с помощью металлизированных масок, эти ПЗУ называются маскируемыми.
Однако некоторые ПЗУ программируются только после изготовления интегральной микросхемы. В таких программируемых постоянных запоминающих устройствах (ППЗУ) программирование может производиться самим потребителем. В биполярной технологии эти ППЗУ различаются по типу необратимого выжигания перемычки или пробоя р-n-перехода. В процессе программирования выбирается адрес соответствующей ячейки; при этом открывается ее выходной транзистор. Затем в шину данных подается импульс тока достаточной мощности. При этом следует точно выполнить временные соотношения, рекомендуемые изготовителем микросхемы. Для записи информации используются специальные программаторы, которые могут быть настроены на программирование данного типа ППЗУ.
В случае ППЗУ, выполненных по МОП-технологии, программирование осуществляется инжектированием электрического заряда. Этот процесс, однако, является обратимым: вся записанная на микросхемах информация стирается путем их облучения ультрафиолетом. Поэтому такие запоминающие устройства называются репрограммируемыми (РПЗУ). В зависимости от типа микросхемы при стирании в ней записываются все нули или все единицы.
Как правило, в ПЗУ по одному адресу записывается не один бит, как в ОЗУ, а целое слово длиной 4 или 8 бит. Поэтому они имеют несколько информационных выходов. Например, обозначение информационной емкости микросхемы 1К х 8 бит означает, что она содержит 1024 слова по 8 бит каждое. Содержание ПЗУ записывается в виде таблицы программирования. В качестве примера приведена таблица 9.18 для ПЗУ на 32 х 8 бит.
Очевидно, что эта таблица ничем не отличается от таблицы переключении восьми логических функций, в которых двоичные разряды адреса представляют собой входные переменные. Поэтому ПЗУ можно использовать в логических схемах в качестве обычного элемента, функция которого, однако, может быть произвольно запрограммирована.
Таблица 9.19
Параметры некоторых распространенных микросхем ППЗУ
В табл. 9.19 представлены основные параметры некоторых распространенных типов ППЗУ, выполненных по разным технологиям.
9.6.3. ПРОГРАММИРУЕМЫЕ ЛОГИЧЕСКИЕ МАТРИЦЫ (ПЛМ)
При программировании ПЗУ исходят из заданной таблицы переключении, рассматривая состояние входных переменных x1…xk в качестве адреса. Каждой комбинации входных переменных таблица переключении ставит в соответствие одно определенное состояние выходных переменных у. Это состояние записывается в ЗУ по соответствующему адресу. Так как k входных переменных могут принимать 2k различных состояний, необходимый объем памяти составляет 2k бит. Если таблица переключении содержит n выходных переменных y1…yn, то по одному адресу записывается n-битовое слово и суммарная емкость ЗУ составит n 2k бит.
Поставляемые в настоящее время ППЗУ имеют наибольший объем 2К х 8 бит. Следовательно, с их помощью можно преобразовать 11 входных переменных в 8 выходных. Поэтому при большем числе входных переменных для реализации логической зависимости уже нельзя обойтись одной микросхемой. Однако часто только весьма небольшое число строк в таблице переключении содержит единицы, а в остальных стоят нули. В этом случае значительно экономнее не запоминать всю таблицу переключении, а образовывать только определенные логические функции Это решение предпочтительнее также тогда, когда в таблице переключении обнаруживается какая-либо закономерность
В разд 9.2 мы уже ознакомились с методом, который позволяет реализовать данную таблицу переключении с помощью соответствующих логических функций. Однако при этом в качестве базовых элементов использовались не запоминающие устройства, а логические схемы. Исходя из дизъюнктивной нормальной формы, выходные переменные можно записать, например, в следующем виде:
Поэтому искомую функцию можно реализовать, образуя сначала необходимые функции И, а затем составляя функции ИЛИ. Эта задача решается особенно легко, если построить матрицу, в которой все требуемые связи между входными переменными или их инверсиями и некоторым числом элементов И реализуются с помощью простых соединений пересекающихся проводников. Во второй такой же матрице можно получить связи между выходными сигналами элементов И и входами элементов ИЛИ. При этом для каждой выходной переменной необходим лишь один элемент ИЛИ. Подобная структура называется программируемой логической матрицей (ПЛМ). Она изображена на рис 9.43, причем ее соединения соответствуют приведенному выше примеру.
Рис 9.43 Программируемая логическая матрица
Как и у ПЗУ, здесь имеются как маскируемые, так и программируемые пользователем типы микросхем.
Таблица 9.20
Таблица программирования для ПЛМ
Обычно необходимые точки соединения задаются в табличной форме (табл. 9.20). Эта таблица представляет собой укороченную таблицу переключений. Если в ячейке какого-либо произведения записана единица, то это означает, что соответствующий вход микросхемы соединяется с соответствующим элементом И без инверсии. Нуль в ячейке таблицы означает, что входной сигнал нужно брать с выхода инвертора. Пустая ячейка означает, что вход в данном случае не подключается.
В правой части таблицы буквой А обозначаются те произведения, которые должны быть логически просуммированы для получения соответствующей выходной переменной y. В качестве примера в данной таблице приведены рассмотренные выше функции y1 и y2.
В табл. 9.21 представлены типичные параметры программируемых пользователем логических матриц.
Таблица 9.21
Параметры программируемых пользователем логических матриц