
- •У. Титце к. Шенк
- •4.7.1. Основная схема
- •5. Полевые транзисторы
- •9.5.1. Основная схема
- •10. Оптоэлектронные приборы
- •11. Линейные и нелинейные аналоговые вычислительные схемы
- •12. Управляемые источники и схемы преобразования полного сопротивления
- •15. Усилители мощности
- •15.4. Комплементарный эмиттерный повторитель по схеме дарлингтона
- •16. Источники питания
- •17. Аналоговые коммутаторы и компараторы
- •18. Генераторы сигналов
- •18.4. Генераторы сигналов специальной формы (функциональные генераторы)
- •19. Комбинационные логические схемы
- •20. Интегральные схемы со структурами последовательностного типа
- •20.4.1. Основная схема
- •21. Микро-эвм
- •22.2.1. Описание во временной области
- •22.2.2. Описание в частотной области
- •25. Измерительные схемы
- •26. Электронные регуляторы
- •Часть I.
- •1. Пояснение применяемых величин
- •Значения времени установления фильтра нижних частот
- •2.1.3. Длительность фронта импульса и частота среза филыра
- •2.2. Фильтр верхних частот
- •Выражение для частоты среза совпадает с соответствующим выражением для фильтра нижних частот:
- •Фильтр верхних частот как элемент rc-связи
- •Фильтр верхних частот как дифференцирующее звено
- •Последовательное соединение нескольких фильтров верхних частот
- •2.3. Компенсированный делитель напряжения
- •2.4. Пассивный полосовой rc-фильтр
- •2.5. Мост вина-робинсона
- •2.6. Двойной т-образный фильтр
- •2.7. Колебательный контур
- •3. Диоды
- •3.1. Характеристики и параметры
- •Динамический режим
- •3.2. Стабилитроны
- •3.3. Варикапы
- •4. Транзистор и схемы на его основе
- •4.1. Характеристики и параметры в режиме малых сигналов
- •4.2. Схема с общим эмиттером
- •4.2.1. Принцип работы
- •Входное и выходное сопротивления
- •4.2.2. Нелинейные искажения
- •4.2.3. Схема с общим эмиттером и отрицательной обратной связью по току
- •Расчет входного сопротивления
- •4.2.4. Отрицательная обратная связь по напряжению
- •4.2.5. Установка рабочей точки
- •Установка рабочей точки с помощью базового тока
- •Установка рабочей точки с помощью отрицательной обратной связи по току
- •4.3. Схема с общей базой
- •4.4. Схема с общим коллектором, эмиттерный повторитель
- •4.5. Транзистор как источник стабильного тока
- •4.5.1. Основная схема
- •4.5.2. Биполярный источник питания
- •4.5.3. Схема «токового зеркала»
- •Тогда получим
- •4.6. Схема дарлингтона
- •Комплементарная схема Дарлингтона
- •4.7. Дифференциальные усилители
- •4.7.1. Основная схема
- •4.7.2. Режим большого сигнала
- •4.7.3. Дифференциальный усилитель с отрицательной обратной связью по току
- •4.7.4. Напряжение разбаланса
- •Дрейф напряжения разбаланса
- •4.8. Измерение некоторых параметров при малом сигнале
- •4.9. Шумы транзистора
- •4.10. Предельные параметры
- •Ряд I (слева направо) то 18, то 5, то 66, то 3; ряд II: транзисторы соответствующей мощности в пластмассовых корпусах
- •5. Полевые транзисторы
- •5.1. Классификация
- •5.2. Характеристики и параметры малых сигналов
- •5.3. Предельные электрические параметры
- •5.4. Основные схемы включения
- •5.4.1. Схема с общим истоком
- •5.4.2. Схема с общим затвором
- •5.4.3. Схема с общим стоком, истоковый повторитель
- •5.5. Полевой транзистор как стабилизатор тока
- •5.6. Дифференциальный усилитель на полевых транзисторах
- •Дрейф рабочей точки
- •5.7. Полевой транзистор в качестве управляемого сопротивления
- •6. Операционный усилитель
- •6.1. Свойства операционного усилителя
- •Входное сопротивление
- •6.2. Принцип отрицательной обратной связи
- •6.3. Неинвертирующий усилитель
- •Входное сопротивление
- •Выходное сопротивление
- •6.4. Инвертирующий усилитель
- •7. Внутренняя структура операционных усилителей
- •7.1. Основные положения
- •7.2. Простейшие схемы операционных усилителей
- •Операционные усилители на полевых транзисторах
- •7.4. Коррекция частотной характеристики
- •7.4.1. Основные положения
- •7.4.2. Полная частотная коррекция
- •Схемная реализация
- •7.4.3. Подстраиваемая частотная коррекция
- •7.4.4. Скорость нарастания
- •Повышение максимального значения скорости нарастания
- •7.4.5. Компенсация емкостной нагрузки
- •7.5. Измерение параметров операционных усилителей
- •Измерение входного тока покоя
- •8. Простейшие переключающие схемы
- •8.1. Транзисторный ключ
- •Динамические свойства
- •8.2. Бистабильные релаксационные схемы
- •8.2.2. Триггер шмитта
- •Триггер Шмитта с эмиттерными связями
- •8.3. Моностабильная релаксационная схема
- •8.4. Нестабильная релаксационная схема
- •9. Базовые логические схемы
- •9.1. Основные логические функции
- •9.2. Составление логических функций
- •9.2.1. Таблица карно
- •9.3. Производные основных логических функций
- •Схемы ттл с диодами Шоттки
- •9.4.7. Комплементарная моп-логика (кмоп)
- •Двунаправленные логические элементы
- •9.4.8. Обзор
- •9.4.9. Специальные схемы выходных каскадов
- •При низком уровне ue выход схемы находится в безразличном состоянии
- •9.5. Интегральные триггеры
- •9.5.1. Основная схема
- •Статический синхронный rs-триггер
- •Статический синхронный d-триггер
- •9.5.2. Триггеры типа m-s (master-slave)
- •9.5.3. Динамический триггер
- •9.6. Полупроводниковые запоминающие устройства
- •Динамические свойства
- •Параметры некоторых распространенных микросхем озу
- •10. Оптоэлектронные приборы
- •10.1. Основные понятия фотометрии
- •10.2. Фоторезистор
- •10.3. Фотодиоды
- •10.4. Фототранзисторы
- •10.5. Светодиоды
- •10.6. Оптроны
- •Часть II. Применения
- •11. Линейные и нелинейные аналоговые вычислительные схемы
- •11.1 Схема суммирования
- •11.2. Схемы вычитания
- •11.3. Биполярное усилительное звено
- •11.4. Схемы интегрирования
- •11.5. Схемы дифференцирования
- •11.6. Решение дифференциальных уравнений
- •11.7. Функциональные преобразователи
- •Решение степенного уравнения вида
- •Применение степенных рядов
- •Дифференциальный усилитель
- •11.8. Аналоговые схемы умножения
- •Генератор треугольного сигнала— разд. 18.4
- •11.9. Преобразование координат
- •12. Управляемые источники и схемы преобразования полного сопротивления
- •12.1. Источники напряжения, управляемые напряжением
- •12.2. Источники напряжения, управляемые током
- •12.3. Источники тока, управляемые напряжением
- •12.4. Источники тока, управляемые током
- •12.5. Преобразователь отрицательного сопротивления (nic)
- •12.6. Гиратор
- •12.7. Циркулятор
- •13. Активные фильтры
- •13.1. Теоретическое описание фильтров нижних частот
- •Фильтр с критическим затуханием: 2-фильтр Бесселя:
- •Фильтр Баттерворта; 4 фильтр Чебышева с неравномерностью 3дБ.
- •13.2. Преобразование нижних частот в верхние
- •13.3. Реализация фильтров нижних и верхних частот первого порядка
- •13.4. Реализация фильтров нижних и верхних частот второго порядка
- •13.5. Реализация фильтров верхних и нижних частот более высокого порядка
- •13.6. Преобразование фильтра нижних частот в полосовой фильтр
- •13.7. Реализация полосовых фильтров второго порядка
- •13.8. Преобразование фильтров нижних частот в заграждающие полосовые фильтры
- •13.9. Реализация заграждающих. Фильтров второго порядка
- •13.10. Фазовый фильтр
- •13.11. Перестраиваемый универсальный фильтр
- •14. Широкополосные усилители
- •14.1. Зависимость коэффициента усиления по току от частоты
- •14.2. Влияние внутренних емкостей транзистора и емкостей монтажа
- •14.3. Каскодная схема
- •14.4. Дифференциальный усилитель как широкополосный усилитель
- •14.5. Симметричный широкополосный усилитель
- •14.6. Широкополосный повторитель напряжения
- •14.7. Широкополосный операционный усилитель
- •15. Усилители мощности
- •15.1. Эмоттерный повторитель как усилитель мощности
- •15.2. Комплементарный эмиттерный повторитель
- •15.3. Схемы ограничения тока
- •15.4. Комплементарный эмиттерный повторитель по схеме дарлингтона
- •15.5. Расчет мощного оконечного каскада
- •15.6. Схемы предварительных усилителей напряжения
- •15.7. Повышение нагрузочной способности интегральных операционных усилителей
- •16. Источники питания
- •16.1. Свойства сетевых трансформаторов
- •16.2 Выпрямители
- •Из соотношения (16.8) определим сначала
- •16.3. Последовательная стабилизация напряжения
- •Ограничение выходного тока
- •Повышение выходного тока стабилизатора
- •Стабилизация отрицательных напряжений
- •16.4. Получение опорного напряжения
- •Полевой транзистор как источник опорного напряжения
- •I кремниевый диод 2 два последовательно включенных кремниевых диода; з светодиод красного свечения;
- •5 Светодиод желтого свечения.
- •16.5. Импульсные регуляторы напряжения
- •Импульсный стабилизатор с повышением напряжения
- •Импульсный стабилизатор с инвертированием напряжения
- •17. Аналоговые коммутаторы и компараторы
- •17.1. Принцип действия
- •17.2. Электронные коммутаторы
- •Параллельный коммутатор
- •Последовательный коммутатор
- •Последовательно-параллельный коммутатор
- •17.3. Аналоговые коммутаторы на базе операционных усилителей
- •17.4. Аналоговые коммутаторы с памятью
- •Аналоговый коммутатор с памятью, выполненный на базе интегратора
- •17.5. Компараторы
- •17.6. Триггер шмитта
- •18. Генераторы сигналов
- •18.2. Кварцевые генераторы
- •18.3. Синусоидальные lс-генераторы
- •18.4. Генераторы сигналов специальной формы (функциональные генераторы)
- •Изменение скважности выходного напряжения
- •18.5. Мультивибраторы
- •Мультивибратор на базе прецизионного триггера Шмитта
- •Для времени, в течение которого транзистор открыт, получим выражение
- •19. Комбинационные логические схемы
- •19.1. Преобразователи кодов
- •Применение дешифраторов для программного управления
- •Преобразование кода «I из п» в двоичный
- •19.2. Мультиплексор и демультиплексор
- •Демультиплексор
- •19.3. Комбинационное устройство сдвига
- •Типы ис
- •19.4. Компараторы
- •Типы ис
- •19.5. Сумматоры
- •Определение переполнения
- •19.6. Умножители
- •19.7. Цифровые функциональные преобразователи
- •20. Интегральные схемы со структурами последовательностного типа
- •20.1. Двоичные счетчики
- •Счетчик с входами прямого и обратного счета
- •Устранение состязаний
- •20.2. Двоично-десятичный счетчик в коде 8421
- •Синхронный двоично-десятичный реверсивный счетчик
- •20.3. Счетчик с предварительной установкой
- •20.4. Регистры сдвига
- •20.4.1. Основная схема
- •20.5. Получение псевдослучайных последовательностей
- •20.6. Первоначальная обработка асинхронного сигнала
- •20.7. Систематический синтез последовательностньк схем
- •Входной мультиплексор
- •21. Микро-эвм
- •21.1. Основная структура микро-эвм
- •21.2. Принцип действия микропроцессора
- •21.3. Набор команд
- •Безусловные переходы
- •Маска прерываний
- •21.4. Отладочные средства
- •Язык ассемблера
- •21.5. Обзор микропроцессоров различного типа
- •21.6. Модульное построение микро-эвм
- •Микромощные запоминающие устройства
- •21.7. Периферийные устройства
- •Адаптер интерфейса периферийных устройств
- •Передача сигналов телетайпа
- •21.8. Минимальные система
- •22. Цифровые фильтры
- •22.1. Теорема о дискретизации (теорема о выборках)
- •Восстановление аналогового сигнала
- •22.2. Цифровая функция передачи фильтра
- •22.2.1. Описание во временной области
- •22.2.2. Описание в частотной области
- •22.3. Билинейное преобразование
- •22.4. Реализация цифровых фильтров
- •Простой пример реализации цифрового фильтра
- •Последовательная обработка сигнала
- •23. Передача данных и индикация
- •23.1. Соединительные линии
- •23.2. Защита данных
- •23.3. Статические цифровые индикаторы
- •23.4. Мультиплексные индикаторы
- •24. Цифро-аналоговые и аналого-цифровые преобразователи
- •24.1. Схемотехнические принципы ца-преобразователей
- •24.2. Построение ца-преобразователей с электронными ключами
- •Дифференциальный усилитель как токовый ключ
- •24.4. Основные принципы ац-преобразования
- •24.5. Точность ац-преобразоватю1ей
- •24.6. Построение ац-преобразователей
- •Компенсационный метод
- •Метод пилообразного напряжения
- •Метод двойного интегрирования
- •Автоматическая корректировка нуля
- •25. Измерительные схемы
- •25.1. Измерение напряжений
- •Увеличение диапазона управляемого напряжения
- •25.2. Измерение тока
- •Величина тока, вытекающего через точку 2, определяется соотношением
- •25.3. Измерительный выпрямитель
- •Двухполупериодный выпрямитель с заземленным выходом
- •Широкополосный Двухполупериодный выпрямитель
- •Измерение «истинного» эффективного значения
- •Термическое преобразование
- •Измерение мгновенных пиковых значений
- •26. Электронные регуляторы
- •26.1. Основные положения
- •26.2. Типы регуляторов
- •26.3. Управление нелинейными объектами
- •26.4. Отслеживающая синхронизация (автоподсгройка)
- •Динамическая характеристика
- •Расчет регулятора
7.2. Простейшие схемы операционных усилителей
В предыдущем разделе были рассмотрены общие требования к структуре операционных усилителей. Из этих требований следует, что в схеме операционного усилителя на входе желательно иметь каскад дифференциального усиления, а на выходе-эмиттерный повторитель. Именно такой структурой обладает представленная на рис 7.2 простейшая схема операционного усилителя.
Рис 7.2 Простой операционный усилитель
Для того чтобы транзистор T2 уже при малых величинах входного сигнала не заходил в область насыщения или отсечки, потенциал на его коллекторе при отсутствии сигнала должен быть приближенно равен 1/2V+ Величина же выходного потенциала при отсутствии сигнала должна равняться нулю. Для сдвига уровней, обеспечивающего гальваническую связь каскадов, используется стабилитрон В приведенной схеме напряжение стабилизации стабилитрона должно составлять l/2V+ — 0,6 В. Если величина синфазного сигнала на входах усилителя равна нулю, то при правильно выбранных параметрах схемы потенциал коллектора транзистора T2 может изменяться от нуля до V+. Диапазон изменений выходного напряжения усилителя составит при этом ± l/2V+. При наличии положительного синфазного сигнала на входах усилителя диапазон изменения выходного напряжения уменьшается на соответствующую этому сигналу величину в отрицательной области.
Операционный усилитель с одним каскадом усиления напряжения практически пригоден только для использования в качестве следящего усилителя, схема которого изображена на рис. 7.3.
Рис 7.3 Следящий усилитель
Коэффициент усиления цепи, охваченной отрицательной обратной связью А = 1, получается при достаточном коэффициенте петлевого усиления. Для такого узкоспециального применения в схему усилителя введены некоторые изменения, показанные на рис. 7.3. Для повышения петлевого усиления и нагрузочной способности усилителя оба резистора rc и re заменены источниками постоянного тока.
Потенциал эмиттеров каскада дифференциального усиления составляет Ue- 0,6 В. Так как благодаря действию обратной связи Ua = Ue, потенциал базы транзистора T3 равен Ue + 0,6 В Таким образом, напряжение коллектор-эмиттер для транзистора Т1 составляет 0,6 В, а для транзистора T2 равняется 1,2 В. Эти величины не зависят от приложенного входного напряжения, так что схема с таким распределением потенциалов вполне работоспособна. Это позволило исключить из нее стабилитрон, который в схеме на рис. 7.2 использовался для смещения выходного напряжения. Поскольку все потенциалы электродов транзистора T1 повторяют изменения входного напряжения, такая схема обладает высоким входным сопротивлением и малой входной емкостью. Следящие усилители, работающие как указано выше, выпускаются промышленностью в монолитном интегральном исполнении (например, усилитель LМ 310 фирмы National).
7.3. СТАНДАРТНАЯ СХЕМА ИНТЕГРАЛЬНОГО ОПЕРАЦИОННОГО УСИЛИТЕЛЯ
Операционные усилители универсального применения должны обеспечивать значительно больший дифференциальный коэффициент усиления, чем усилители с одним каскадом усиления напряжения Одна из наиболее распространенных схем операционного усилителя типа 741 представлена на рис 7.4
Рис 7.4 Принципиальная схема интегрального операционного усилителя A 741
Входной каскад выполнен по схеме дифференциального усилителя на р-n-р-транзисторах T1 и T2. Источник тока T4 служит в качестве сопротивления нагрузки транзистора T2. Ток этого стабилизированного источника, однако, не является неизменным, так как транзистор T4 совместно с транзистором T3 образует по отношению к коллекторному току транзистора T1 так называемую схему тонового зеркала Для выходного тока входного каскада можно, таким образом, записать следующее соотношение
Ik = IC1 – IC2
Благодаря тому что выходным сигналом дифференциального каскада является разностный ток, синфазные изменения коллекторных токов входных транзисторов взаимно компенсируются, что значительно ослабляет синфазные входные сигналы.
Эмиттеры транзисторов T3 и T4 подключены к внешним выводам интегральной микросхемы, которые служат для установки нулевой точки. При помощи внешних потенциометров, подключаемых к этим выводам, можно изменять соотношение между токами коллекторов транзисторов T1 и T2.
Второй каскад усиления образует составной транзистор T5, T6 Он включен по схеме с общим эмиттером и имеет в качестве нагрузочного сопротивления источник тока Конденсатор Сk предназначен для коррекции частотной характеристики Расчет параметров цепей частотной коррекции будет подробно рассмотрен в следующем разделе.
Выходной каскад образуют транзисторы T7, T8. Они включены по схеме комплементарного эмиттерного повторителя с малым током покоя (двухтактное включение в режиме АВ) Такое включение транзисторов подробно рассматривается, в гл 15.
Теперь оценим дифференциальное усиление такой схемы. Для обеспечения малых входных токов транзисторы входного каскада работают с коллекторным током ~ 10 мкА Их крутизна S при таком токе составляет приблизительно 0,4 мА/В Крутизна всего дифференциального каскада, как было показано в разд. 4.7 1, составляет половину этой величины Так как каждый из входных транзисторов состоит в действительности из двух идентичных транзисторов, эта величина еще уменьшится вдвое. Правда, благодаря наличию схемы «токового зеркала» на транзисторах T3, T4 она снова удваивается. Таким образом, для входного каскада результирующее значение крутизны равно
Для определения суммарного коэффициента усиления по напряжению для входного каскада необходимо по аналогии со схемой на рис 4.11 рассчитать величину эквивалентного сопротивления нагрузки. В соответствии со схемой замещения, изображенной на рис. 7.5, для приведенных значении токов покоя оно составит rобщ = 2 МОм. Отсюда получается, что коэффициент усиления входного каскада равен 400.
Рис 7.5 Низкочастотная схема замещения входного каскада для режима малого сигнала
Крутизна каскада усиления S' на составном транзисторе при I’C = 300 мкА в соответствии с расчетом, проведенным в разд 4.6, составит около 6 мА/В. При выходном нагрузочном сопротивлении RL = 2 кОм расчет по схеме замещения в режиме малого сигнала, представленной на рис. 7.6, дает для этого каскада величину коэффициента усиления около 450.
Рис 7.6. Низкочастотная схема замещения выходного каскада для режима малого сигнала
Коэффициент усиления всего операционного усилителя, таким образом, составит
AD = 400 450 = 1,8 105
В действительности величина измеренного коэффициента усиления оказывается несколько ниже Различие фактического и расчетного значений объясняется неучтенной паразитной отрицательной обратной связью между выходными и входными цепями [7.1]
Как можно видеть из рис 7.6, выходной эмиттерный повторитель управляется высокоомным источником сигнала, внутреннее сопротивление которого равно выходному сопротивлению второго каскада усиления напряжения. В соответствии с рис 7.6 оно составляет 120 кОм; если коэффициент усиления по току выходных транзисторов достигает 100, выходное сопротивление операционного усилителя не превысит 1,2 кОм