
- •У. Титце к. Шенк
- •4.7.1. Основная схема
- •5. Полевые транзисторы
- •9.5.1. Основная схема
- •10. Оптоэлектронные приборы
- •11. Линейные и нелинейные аналоговые вычислительные схемы
- •12. Управляемые источники и схемы преобразования полного сопротивления
- •15. Усилители мощности
- •15.4. Комплементарный эмиттерный повторитель по схеме дарлингтона
- •16. Источники питания
- •17. Аналоговые коммутаторы и компараторы
- •18. Генераторы сигналов
- •18.4. Генераторы сигналов специальной формы (функциональные генераторы)
- •19. Комбинационные логические схемы
- •20. Интегральные схемы со структурами последовательностного типа
- •20.4.1. Основная схема
- •21. Микро-эвм
- •22.2.1. Описание во временной области
- •22.2.2. Описание в частотной области
- •25. Измерительные схемы
- •26. Электронные регуляторы
- •Часть I.
- •1. Пояснение применяемых величин
- •Значения времени установления фильтра нижних частот
- •2.1.3. Длительность фронта импульса и частота среза филыра
- •2.2. Фильтр верхних частот
- •Выражение для частоты среза совпадает с соответствующим выражением для фильтра нижних частот:
- •Фильтр верхних частот как элемент rc-связи
- •Фильтр верхних частот как дифференцирующее звено
- •Последовательное соединение нескольких фильтров верхних частот
- •2.3. Компенсированный делитель напряжения
- •2.4. Пассивный полосовой rc-фильтр
- •2.5. Мост вина-робинсона
- •2.6. Двойной т-образный фильтр
- •2.7. Колебательный контур
- •3. Диоды
- •3.1. Характеристики и параметры
- •Динамический режим
- •3.2. Стабилитроны
- •3.3. Варикапы
- •4. Транзистор и схемы на его основе
- •4.1. Характеристики и параметры в режиме малых сигналов
- •4.2. Схема с общим эмиттером
- •4.2.1. Принцип работы
- •Входное и выходное сопротивления
- •4.2.2. Нелинейные искажения
- •4.2.3. Схема с общим эмиттером и отрицательной обратной связью по току
- •Расчет входного сопротивления
- •4.2.4. Отрицательная обратная связь по напряжению
- •4.2.5. Установка рабочей точки
- •Установка рабочей точки с помощью базового тока
- •Установка рабочей точки с помощью отрицательной обратной связи по току
- •4.3. Схема с общей базой
- •4.4. Схема с общим коллектором, эмиттерный повторитель
- •4.5. Транзистор как источник стабильного тока
- •4.5.1. Основная схема
- •4.5.2. Биполярный источник питания
- •4.5.3. Схема «токового зеркала»
- •Тогда получим
- •4.6. Схема дарлингтона
- •Комплементарная схема Дарлингтона
- •4.7. Дифференциальные усилители
- •4.7.1. Основная схема
- •4.7.2. Режим большого сигнала
- •4.7.3. Дифференциальный усилитель с отрицательной обратной связью по току
- •4.7.4. Напряжение разбаланса
- •Дрейф напряжения разбаланса
- •4.8. Измерение некоторых параметров при малом сигнале
- •4.9. Шумы транзистора
- •4.10. Предельные параметры
- •Ряд I (слева направо) то 18, то 5, то 66, то 3; ряд II: транзисторы соответствующей мощности в пластмассовых корпусах
- •5. Полевые транзисторы
- •5.1. Классификация
- •5.2. Характеристики и параметры малых сигналов
- •5.3. Предельные электрические параметры
- •5.4. Основные схемы включения
- •5.4.1. Схема с общим истоком
- •5.4.2. Схема с общим затвором
- •5.4.3. Схема с общим стоком, истоковый повторитель
- •5.5. Полевой транзистор как стабилизатор тока
- •5.6. Дифференциальный усилитель на полевых транзисторах
- •Дрейф рабочей точки
- •5.7. Полевой транзистор в качестве управляемого сопротивления
- •6. Операционный усилитель
- •6.1. Свойства операционного усилителя
- •Входное сопротивление
- •6.2. Принцип отрицательной обратной связи
- •6.3. Неинвертирующий усилитель
- •Входное сопротивление
- •Выходное сопротивление
- •6.4. Инвертирующий усилитель
- •7. Внутренняя структура операционных усилителей
- •7.1. Основные положения
- •7.2. Простейшие схемы операционных усилителей
- •Операционные усилители на полевых транзисторах
- •7.4. Коррекция частотной характеристики
- •7.4.1. Основные положения
- •7.4.2. Полная частотная коррекция
- •Схемная реализация
- •7.4.3. Подстраиваемая частотная коррекция
- •7.4.4. Скорость нарастания
- •Повышение максимального значения скорости нарастания
- •7.4.5. Компенсация емкостной нагрузки
- •7.5. Измерение параметров операционных усилителей
- •Измерение входного тока покоя
- •8. Простейшие переключающие схемы
- •8.1. Транзисторный ключ
- •Динамические свойства
- •8.2. Бистабильные релаксационные схемы
- •8.2.2. Триггер шмитта
- •Триггер Шмитта с эмиттерными связями
- •8.3. Моностабильная релаксационная схема
- •8.4. Нестабильная релаксационная схема
- •9. Базовые логические схемы
- •9.1. Основные логические функции
- •9.2. Составление логических функций
- •9.2.1. Таблица карно
- •9.3. Производные основных логических функций
- •Схемы ттл с диодами Шоттки
- •9.4.7. Комплементарная моп-логика (кмоп)
- •Двунаправленные логические элементы
- •9.4.8. Обзор
- •9.4.9. Специальные схемы выходных каскадов
- •При низком уровне ue выход схемы находится в безразличном состоянии
- •9.5. Интегральные триггеры
- •9.5.1. Основная схема
- •Статический синхронный rs-триггер
- •Статический синхронный d-триггер
- •9.5.2. Триггеры типа m-s (master-slave)
- •9.5.3. Динамический триггер
- •9.6. Полупроводниковые запоминающие устройства
- •Динамические свойства
- •Параметры некоторых распространенных микросхем озу
- •10. Оптоэлектронные приборы
- •10.1. Основные понятия фотометрии
- •10.2. Фоторезистор
- •10.3. Фотодиоды
- •10.4. Фототранзисторы
- •10.5. Светодиоды
- •10.6. Оптроны
- •Часть II. Применения
- •11. Линейные и нелинейные аналоговые вычислительные схемы
- •11.1 Схема суммирования
- •11.2. Схемы вычитания
- •11.3. Биполярное усилительное звено
- •11.4. Схемы интегрирования
- •11.5. Схемы дифференцирования
- •11.6. Решение дифференциальных уравнений
- •11.7. Функциональные преобразователи
- •Решение степенного уравнения вида
- •Применение степенных рядов
- •Дифференциальный усилитель
- •11.8. Аналоговые схемы умножения
- •Генератор треугольного сигнала— разд. 18.4
- •11.9. Преобразование координат
- •12. Управляемые источники и схемы преобразования полного сопротивления
- •12.1. Источники напряжения, управляемые напряжением
- •12.2. Источники напряжения, управляемые током
- •12.3. Источники тока, управляемые напряжением
- •12.4. Источники тока, управляемые током
- •12.5. Преобразователь отрицательного сопротивления (nic)
- •12.6. Гиратор
- •12.7. Циркулятор
- •13. Активные фильтры
- •13.1. Теоретическое описание фильтров нижних частот
- •Фильтр с критическим затуханием: 2-фильтр Бесселя:
- •Фильтр Баттерворта; 4 фильтр Чебышева с неравномерностью 3дБ.
- •13.2. Преобразование нижних частот в верхние
- •13.3. Реализация фильтров нижних и верхних частот первого порядка
- •13.4. Реализация фильтров нижних и верхних частот второго порядка
- •13.5. Реализация фильтров верхних и нижних частот более высокого порядка
- •13.6. Преобразование фильтра нижних частот в полосовой фильтр
- •13.7. Реализация полосовых фильтров второго порядка
- •13.8. Преобразование фильтров нижних частот в заграждающие полосовые фильтры
- •13.9. Реализация заграждающих. Фильтров второго порядка
- •13.10. Фазовый фильтр
- •13.11. Перестраиваемый универсальный фильтр
- •14. Широкополосные усилители
- •14.1. Зависимость коэффициента усиления по току от частоты
- •14.2. Влияние внутренних емкостей транзистора и емкостей монтажа
- •14.3. Каскодная схема
- •14.4. Дифференциальный усилитель как широкополосный усилитель
- •14.5. Симметричный широкополосный усилитель
- •14.6. Широкополосный повторитель напряжения
- •14.7. Широкополосный операционный усилитель
- •15. Усилители мощности
- •15.1. Эмоттерный повторитель как усилитель мощности
- •15.2. Комплементарный эмиттерный повторитель
- •15.3. Схемы ограничения тока
- •15.4. Комплементарный эмиттерный повторитель по схеме дарлингтона
- •15.5. Расчет мощного оконечного каскада
- •15.6. Схемы предварительных усилителей напряжения
- •15.7. Повышение нагрузочной способности интегральных операционных усилителей
- •16. Источники питания
- •16.1. Свойства сетевых трансформаторов
- •16.2 Выпрямители
- •Из соотношения (16.8) определим сначала
- •16.3. Последовательная стабилизация напряжения
- •Ограничение выходного тока
- •Повышение выходного тока стабилизатора
- •Стабилизация отрицательных напряжений
- •16.4. Получение опорного напряжения
- •Полевой транзистор как источник опорного напряжения
- •I кремниевый диод 2 два последовательно включенных кремниевых диода; з светодиод красного свечения;
- •5 Светодиод желтого свечения.
- •16.5. Импульсные регуляторы напряжения
- •Импульсный стабилизатор с повышением напряжения
- •Импульсный стабилизатор с инвертированием напряжения
- •17. Аналоговые коммутаторы и компараторы
- •17.1. Принцип действия
- •17.2. Электронные коммутаторы
- •Параллельный коммутатор
- •Последовательный коммутатор
- •Последовательно-параллельный коммутатор
- •17.3. Аналоговые коммутаторы на базе операционных усилителей
- •17.4. Аналоговые коммутаторы с памятью
- •Аналоговый коммутатор с памятью, выполненный на базе интегратора
- •17.5. Компараторы
- •17.6. Триггер шмитта
- •18. Генераторы сигналов
- •18.2. Кварцевые генераторы
- •18.3. Синусоидальные lс-генераторы
- •18.4. Генераторы сигналов специальной формы (функциональные генераторы)
- •Изменение скважности выходного напряжения
- •18.5. Мультивибраторы
- •Мультивибратор на базе прецизионного триггера Шмитта
- •Для времени, в течение которого транзистор открыт, получим выражение
- •19. Комбинационные логические схемы
- •19.1. Преобразователи кодов
- •Применение дешифраторов для программного управления
- •Преобразование кода «I из п» в двоичный
- •19.2. Мультиплексор и демультиплексор
- •Демультиплексор
- •19.3. Комбинационное устройство сдвига
- •Типы ис
- •19.4. Компараторы
- •Типы ис
- •19.5. Сумматоры
- •Определение переполнения
- •19.6. Умножители
- •19.7. Цифровые функциональные преобразователи
- •20. Интегральные схемы со структурами последовательностного типа
- •20.1. Двоичные счетчики
- •Счетчик с входами прямого и обратного счета
- •Устранение состязаний
- •20.2. Двоично-десятичный счетчик в коде 8421
- •Синхронный двоично-десятичный реверсивный счетчик
- •20.3. Счетчик с предварительной установкой
- •20.4. Регистры сдвига
- •20.4.1. Основная схема
- •20.5. Получение псевдослучайных последовательностей
- •20.6. Первоначальная обработка асинхронного сигнала
- •20.7. Систематический синтез последовательностньк схем
- •Входной мультиплексор
- •21. Микро-эвм
- •21.1. Основная структура микро-эвм
- •21.2. Принцип действия микропроцессора
- •21.3. Набор команд
- •Безусловные переходы
- •Маска прерываний
- •21.4. Отладочные средства
- •Язык ассемблера
- •21.5. Обзор микропроцессоров различного типа
- •21.6. Модульное построение микро-эвм
- •Микромощные запоминающие устройства
- •21.7. Периферийные устройства
- •Адаптер интерфейса периферийных устройств
- •Передача сигналов телетайпа
- •21.8. Минимальные система
- •22. Цифровые фильтры
- •22.1. Теорема о дискретизации (теорема о выборках)
- •Восстановление аналогового сигнала
- •22.2. Цифровая функция передачи фильтра
- •22.2.1. Описание во временной области
- •22.2.2. Описание в частотной области
- •22.3. Билинейное преобразование
- •22.4. Реализация цифровых фильтров
- •Простой пример реализации цифрового фильтра
- •Последовательная обработка сигнала
- •23. Передача данных и индикация
- •23.1. Соединительные линии
- •23.2. Защита данных
- •23.3. Статические цифровые индикаторы
- •23.4. Мультиплексные индикаторы
- •24. Цифро-аналоговые и аналого-цифровые преобразователи
- •24.1. Схемотехнические принципы ца-преобразователей
- •24.2. Построение ца-преобразователей с электронными ключами
- •Дифференциальный усилитель как токовый ключ
- •24.4. Основные принципы ац-преобразования
- •24.5. Точность ац-преобразоватю1ей
- •24.6. Построение ац-преобразователей
- •Компенсационный метод
- •Метод пилообразного напряжения
- •Метод двойного интегрирования
- •Автоматическая корректировка нуля
- •25. Измерительные схемы
- •25.1. Измерение напряжений
- •Увеличение диапазона управляемого напряжения
- •25.2. Измерение тока
- •Величина тока, вытекающего через точку 2, определяется соотношением
- •25.3. Измерительный выпрямитель
- •Двухполупериодный выпрямитель с заземленным выходом
- •Широкополосный Двухполупериодный выпрямитель
- •Измерение «истинного» эффективного значения
- •Термическое преобразование
- •Измерение мгновенных пиковых значений
- •26. Электронные регуляторы
- •26.1. Основные положения
- •26.2. Типы регуляторов
- •26.3. Управление нелинейными объектами
- •26.4. Отслеживающая синхронизация (автоподсгройка)
- •Динамическая характеристика
- •Расчет регулятора
Установка рабочей точки с помощью базового тока
Влияние UBE на потенциал коллектора при отсутствии сигнала можно устранить, установив рабочую точку с помощью стабильного базового тока. Для этого база соединяется с источником питающего напряжения через высокоомное сопротивление (рис. 4.17).
Рис 4.17 Установка рабочей точки с помощью стабильного базового тока
Исходя из необходимого коллекторного тока IC, при отсутствии сигнала получим базовый ток
Этот ток должен протекать через R1, величину которого определим из выражения
Поскольку V+, как правило, велико по сравнению с UBEA, то UBEA практически не влияет на базовый ток. Это в значительной степени устраняет источник дрейфа. Однако температурная зависимость коэффициента усиления по Току В остается, причем В увеличивается примерно на 1% при повышении температуры на один градус. Кроме того, недостатком является то обстоятельство, что относительно большие разбросы В существенно изменяют коллекторный ток и потенциал коллектора при отсутствии сигнала.
При использовании германиевых транзисторов в этой схеме необходимо принимать во внимание обратные токи, так как они примерно в 1000 раз больше, чем у кремниевых транзисторов Обратный ток перехода коллектор-база ICB0 проходит в этом случае через низкоомное сопротивление по пути к общей точке, поэтому он складывается с базовым током, следовательно,
Так как для германиевых транзисторов токи IB и ICB0 имеют один и тот же порядок, то они вносят значительную нестабильность рабочей точки. Поэтому рассмотренная схема так же мало подходит для германиевых транзисторов, как и предыдущая.
Входное сопротивление схемы re = R1||rBE значительно больше, чем при установке рабочей точки с помощью делителя напряжения. Это является недостатком, так как транзистор довольно долго остается закрытым при воздействии большого положительного входного импульса. В результате вместо кратковременного заряда конденсатора С через переход база-эмиттер происходит медленный разряд его через резистор R1.
Установка рабочей точки с помощью отрицательной обратной связи по току
Улучшение стабильности рабочей точки достигается при использовании отрицательной обратной связи на низких частотах. Для этой цели служит цепь RECE на рис. 4.18.
Рис 4.18 Стабилизация рабочей точки с помощью отрицательной обратной связи по постоянному току
При этом дрейф напряжения база-эмиттер усиливается в RC/RE раз. Вариант с использованием двух источников— положительной и отрицательной полярности-приведен на рис. 4.19.
Рис 4.19 Упрощенная схема стабилизации рабочей точки с дополнительным отрицательным питающим напряжением
В этом случае базовый потенциал при отсутствии сигнала можно сделать равным нулю; делитель напряжения на входе становится излишним, если входной источник обеспечивает цепь для постоянного базового тока при отсутствии сигнала.
Если отрицательная обратная связь нежелательна, конденсатор СE должен шунтировать переменное напряжение в требуемой области частот. Для определения требований к его номиналу рассмотрим частотную характеристику усиления, обусловленную СE. С этой целью заменим в формуле (4.14) RE на
При частотах выше f1 = 1/2RECE модуль полученного импеданса уменьшается, т е. коэффициент усиления возрастает пропорционально частоте и достигает значения SRC (рис 420)
Рис 4.20 Воздействие конденсатора СE на частотную характеристику усиления
Отсюда следует, что
Если требуется осуществить неглубокую отрицательную обратную связь по переменному напряжению, можно включить резистор R`E < RE последовательно с конденсатором СE.
Выбор параметров схемы, изображенной на рис 4.18, поясним на числовом примере Источник имеет внутреннее сопротивление Rg = 10 кОм. Коэффициент усиления по току транзистора В = 250, питающее напряжение V+ = 15 В Для того чтобы источник сигнала не был слишком сильно нагружен, выберем коллекторный ток небольшим, таким, чтобы для переменных напряжений входное сопротивление составило не менее 20 кОм Это входное сопротивление состоит из параллельно соединенных сопротивлений R1, R2 и rBE, так как конденсатор СE в рассматриваемой области частот можно представить в виде короткозамкнутой перемычки Выберем IC = 200 мкА и из формулы (4.11) найдем
Если делитель напряжения R1R2 выбрать надлежащим образом, то можно выполнить указанное выше требование обеспечения результирующего входного сопротивления 20кОм
Далее необходимо установить потенциал при отсутствии сигнала. Стабильность рабочей точки тем лучше, чем больше падение постоянного напряжения на RE, так как в этом случае изменение UBE остается меньше VE и, следовательно, влияние коллекторного тока будет незначительным Если выбрать VE = 2 В, то коллекторный ток изменится только на
При установке потенциала коллектора в отсутствие сигнала VCA необходимо следить за тем, чтобы напряжение коллектор-эмиттер транзистора во время его работы не падало до напряжения насыщения UCEнас 0,3 В, поскольку в противном случае параметры , S и rCE в соответствии с характеристиками рис 4.6 значительно уменьшатся. Попадание транзистора в режим насыщения может привести к сильным нелинейным искажениям. С другой стороны, потенциал коллектора при отсутствии сигнала необходимо выбирать не очень большим, так как иначе падение напряжения на RC и коэффициент усиления по напряжению будут малы. Положим, что наибольший сигнал на выходе должен составлять VCмакс = + 2 В относительно потенциала при отсутствии сигнала Тогда получим
Для того чтобы это значение с учетом допусков на UBEA ,V+ и резисторы нельзя было превысить, выберем UCA = 7 В. Рассчитаем для этого случая номиналы резисторов RC и RE
При этом дрейф потенциала коллектора при отсутствии сигнала равен
Далее необходимо установить базовый потенциал при отсутствии сигнала таким образом, чтобы падение напряжения на RE составляло ~ 2 В. Согласно рис. 4.5, при малых коллекторных токах UBE равняется около 0,6 В. Отсюда следует
Базовый ток равен
Он не должен существенно влиять на базовый потенциал. Поэтому через делитель напряжения R1, R2 должен протекать шунтирующий ток, составляющий ~ 10IB. Для этого необходимо, чтобы
Рассчитанные значения номиналов резисторов указаны на рис. 4.21. Входное сопротивление по переменному току составляет
Для коллекторного тока 200 мА сопротивление rCE равно 500 кОм. Тогда с учетом формулы (4.8) найдем коэффициент усиления по напряжению для ненагруженного каскада
Таким образом, усиление э.д.с. генератора сигнала при RL = 100 кОм составит
Это значение сохраняется до нижней частоты fмин = 20 Гц. Поскольку схема содержит три фильтра верхних частот, то нужно выбрать частоты среза fg этих фильтров в пределах до fмин. Положим, что эти частоты равны; используя формулу (2.19), найдем
Рис. 4.21. К примеру расчета параметров низкочастотного усилителя.