
- •У. Титце к. Шенк
- •4.7.1. Основная схема
- •5. Полевые транзисторы
- •9.5.1. Основная схема
- •10. Оптоэлектронные приборы
- •11. Линейные и нелинейные аналоговые вычислительные схемы
- •12. Управляемые источники и схемы преобразования полного сопротивления
- •15. Усилители мощности
- •15.4. Комплементарный эмиттерный повторитель по схеме дарлингтона
- •16. Источники питания
- •17. Аналоговые коммутаторы и компараторы
- •18. Генераторы сигналов
- •18.4. Генераторы сигналов специальной формы (функциональные генераторы)
- •19. Комбинационные логические схемы
- •20. Интегральные схемы со структурами последовательностного типа
- •20.4.1. Основная схема
- •21. Микро-эвм
- •22.2.1. Описание во временной области
- •22.2.2. Описание в частотной области
- •25. Измерительные схемы
- •26. Электронные регуляторы
- •Часть I.
- •1. Пояснение применяемых величин
- •Значения времени установления фильтра нижних частот
- •2.1.3. Длительность фронта импульса и частота среза филыра
- •2.2. Фильтр верхних частот
- •Выражение для частоты среза совпадает с соответствующим выражением для фильтра нижних частот:
- •Фильтр верхних частот как элемент rc-связи
- •Фильтр верхних частот как дифференцирующее звено
- •Последовательное соединение нескольких фильтров верхних частот
- •2.3. Компенсированный делитель напряжения
- •2.4. Пассивный полосовой rc-фильтр
- •2.5. Мост вина-робинсона
- •2.6. Двойной т-образный фильтр
- •2.7. Колебательный контур
- •3. Диоды
- •3.1. Характеристики и параметры
- •Динамический режим
- •3.2. Стабилитроны
- •3.3. Варикапы
- •4. Транзистор и схемы на его основе
- •4.1. Характеристики и параметры в режиме малых сигналов
- •4.2. Схема с общим эмиттером
- •4.2.1. Принцип работы
- •Входное и выходное сопротивления
- •4.2.2. Нелинейные искажения
- •4.2.3. Схема с общим эмиттером и отрицательной обратной связью по току
- •Расчет входного сопротивления
- •4.2.4. Отрицательная обратная связь по напряжению
- •4.2.5. Установка рабочей точки
- •Установка рабочей точки с помощью базового тока
- •Установка рабочей точки с помощью отрицательной обратной связи по току
- •4.3. Схема с общей базой
- •4.4. Схема с общим коллектором, эмиттерный повторитель
- •4.5. Транзистор как источник стабильного тока
- •4.5.1. Основная схема
- •4.5.2. Биполярный источник питания
- •4.5.3. Схема «токового зеркала»
- •Тогда получим
- •4.6. Схема дарлингтона
- •Комплементарная схема Дарлингтона
- •4.7. Дифференциальные усилители
- •4.7.1. Основная схема
- •4.7.2. Режим большого сигнала
- •4.7.3. Дифференциальный усилитель с отрицательной обратной связью по току
- •4.7.4. Напряжение разбаланса
- •Дрейф напряжения разбаланса
- •4.8. Измерение некоторых параметров при малом сигнале
- •4.9. Шумы транзистора
- •4.10. Предельные параметры
- •Ряд I (слева направо) то 18, то 5, то 66, то 3; ряд II: транзисторы соответствующей мощности в пластмассовых корпусах
- •5. Полевые транзисторы
- •5.1. Классификация
- •5.2. Характеристики и параметры малых сигналов
- •5.3. Предельные электрические параметры
- •5.4. Основные схемы включения
- •5.4.1. Схема с общим истоком
- •5.4.2. Схема с общим затвором
- •5.4.3. Схема с общим стоком, истоковый повторитель
- •5.5. Полевой транзистор как стабилизатор тока
- •5.6. Дифференциальный усилитель на полевых транзисторах
- •Дрейф рабочей точки
- •5.7. Полевой транзистор в качестве управляемого сопротивления
- •6. Операционный усилитель
- •6.1. Свойства операционного усилителя
- •Входное сопротивление
- •6.2. Принцип отрицательной обратной связи
- •6.3. Неинвертирующий усилитель
- •Входное сопротивление
- •Выходное сопротивление
- •6.4. Инвертирующий усилитель
- •7. Внутренняя структура операционных усилителей
- •7.1. Основные положения
- •7.2. Простейшие схемы операционных усилителей
- •Операционные усилители на полевых транзисторах
- •7.4. Коррекция частотной характеристики
- •7.4.1. Основные положения
- •7.4.2. Полная частотная коррекция
- •Схемная реализация
- •7.4.3. Подстраиваемая частотная коррекция
- •7.4.4. Скорость нарастания
- •Повышение максимального значения скорости нарастания
- •7.4.5. Компенсация емкостной нагрузки
- •7.5. Измерение параметров операционных усилителей
- •Измерение входного тока покоя
- •8. Простейшие переключающие схемы
- •8.1. Транзисторный ключ
- •Динамические свойства
- •8.2. Бистабильные релаксационные схемы
- •8.2.2. Триггер шмитта
- •Триггер Шмитта с эмиттерными связями
- •8.3. Моностабильная релаксационная схема
- •8.4. Нестабильная релаксационная схема
- •9. Базовые логические схемы
- •9.1. Основные логические функции
- •9.2. Составление логических функций
- •9.2.1. Таблица карно
- •9.3. Производные основных логических функций
- •Схемы ттл с диодами Шоттки
- •9.4.7. Комплементарная моп-логика (кмоп)
- •Двунаправленные логические элементы
- •9.4.8. Обзор
- •9.4.9. Специальные схемы выходных каскадов
- •При низком уровне ue выход схемы находится в безразличном состоянии
- •9.5. Интегральные триггеры
- •9.5.1. Основная схема
- •Статический синхронный rs-триггер
- •Статический синхронный d-триггер
- •9.5.2. Триггеры типа m-s (master-slave)
- •9.5.3. Динамический триггер
- •9.6. Полупроводниковые запоминающие устройства
- •Динамические свойства
- •Параметры некоторых распространенных микросхем озу
- •10. Оптоэлектронные приборы
- •10.1. Основные понятия фотометрии
- •10.2. Фоторезистор
- •10.3. Фотодиоды
- •10.4. Фототранзисторы
- •10.5. Светодиоды
- •10.6. Оптроны
- •Часть II. Применения
- •11. Линейные и нелинейные аналоговые вычислительные схемы
- •11.1 Схема суммирования
- •11.2. Схемы вычитания
- •11.3. Биполярное усилительное звено
- •11.4. Схемы интегрирования
- •11.5. Схемы дифференцирования
- •11.6. Решение дифференциальных уравнений
- •11.7. Функциональные преобразователи
- •Решение степенного уравнения вида
- •Применение степенных рядов
- •Дифференциальный усилитель
- •11.8. Аналоговые схемы умножения
- •Генератор треугольного сигнала— разд. 18.4
- •11.9. Преобразование координат
- •12. Управляемые источники и схемы преобразования полного сопротивления
- •12.1. Источники напряжения, управляемые напряжением
- •12.2. Источники напряжения, управляемые током
- •12.3. Источники тока, управляемые напряжением
- •12.4. Источники тока, управляемые током
- •12.5. Преобразователь отрицательного сопротивления (nic)
- •12.6. Гиратор
- •12.7. Циркулятор
- •13. Активные фильтры
- •13.1. Теоретическое описание фильтров нижних частот
- •Фильтр с критическим затуханием: 2-фильтр Бесселя:
- •Фильтр Баттерворта; 4 фильтр Чебышева с неравномерностью 3дБ.
- •13.2. Преобразование нижних частот в верхние
- •13.3. Реализация фильтров нижних и верхних частот первого порядка
- •13.4. Реализация фильтров нижних и верхних частот второго порядка
- •13.5. Реализация фильтров верхних и нижних частот более высокого порядка
- •13.6. Преобразование фильтра нижних частот в полосовой фильтр
- •13.7. Реализация полосовых фильтров второго порядка
- •13.8. Преобразование фильтров нижних частот в заграждающие полосовые фильтры
- •13.9. Реализация заграждающих. Фильтров второго порядка
- •13.10. Фазовый фильтр
- •13.11. Перестраиваемый универсальный фильтр
- •14. Широкополосные усилители
- •14.1. Зависимость коэффициента усиления по току от частоты
- •14.2. Влияние внутренних емкостей транзистора и емкостей монтажа
- •14.3. Каскодная схема
- •14.4. Дифференциальный усилитель как широкополосный усилитель
- •14.5. Симметричный широкополосный усилитель
- •14.6. Широкополосный повторитель напряжения
- •14.7. Широкополосный операционный усилитель
- •15. Усилители мощности
- •15.1. Эмоттерный повторитель как усилитель мощности
- •15.2. Комплементарный эмиттерный повторитель
- •15.3. Схемы ограничения тока
- •15.4. Комплементарный эмиттерный повторитель по схеме дарлингтона
- •15.5. Расчет мощного оконечного каскада
- •15.6. Схемы предварительных усилителей напряжения
- •15.7. Повышение нагрузочной способности интегральных операционных усилителей
- •16. Источники питания
- •16.1. Свойства сетевых трансформаторов
- •16.2 Выпрямители
- •Из соотношения (16.8) определим сначала
- •16.3. Последовательная стабилизация напряжения
- •Ограничение выходного тока
- •Повышение выходного тока стабилизатора
- •Стабилизация отрицательных напряжений
- •16.4. Получение опорного напряжения
- •Полевой транзистор как источник опорного напряжения
- •I кремниевый диод 2 два последовательно включенных кремниевых диода; з светодиод красного свечения;
- •5 Светодиод желтого свечения.
- •16.5. Импульсные регуляторы напряжения
- •Импульсный стабилизатор с повышением напряжения
- •Импульсный стабилизатор с инвертированием напряжения
- •17. Аналоговые коммутаторы и компараторы
- •17.1. Принцип действия
- •17.2. Электронные коммутаторы
- •Параллельный коммутатор
- •Последовательный коммутатор
- •Последовательно-параллельный коммутатор
- •17.3. Аналоговые коммутаторы на базе операционных усилителей
- •17.4. Аналоговые коммутаторы с памятью
- •Аналоговый коммутатор с памятью, выполненный на базе интегратора
- •17.5. Компараторы
- •17.6. Триггер шмитта
- •18. Генераторы сигналов
- •18.2. Кварцевые генераторы
- •18.3. Синусоидальные lс-генераторы
- •18.4. Генераторы сигналов специальной формы (функциональные генераторы)
- •Изменение скважности выходного напряжения
- •18.5. Мультивибраторы
- •Мультивибратор на базе прецизионного триггера Шмитта
- •Для времени, в течение которого транзистор открыт, получим выражение
- •19. Комбинационные логические схемы
- •19.1. Преобразователи кодов
- •Применение дешифраторов для программного управления
- •Преобразование кода «I из п» в двоичный
- •19.2. Мультиплексор и демультиплексор
- •Демультиплексор
- •19.3. Комбинационное устройство сдвига
- •Типы ис
- •19.4. Компараторы
- •Типы ис
- •19.5. Сумматоры
- •Определение переполнения
- •19.6. Умножители
- •19.7. Цифровые функциональные преобразователи
- •20. Интегральные схемы со структурами последовательностного типа
- •20.1. Двоичные счетчики
- •Счетчик с входами прямого и обратного счета
- •Устранение состязаний
- •20.2. Двоично-десятичный счетчик в коде 8421
- •Синхронный двоично-десятичный реверсивный счетчик
- •20.3. Счетчик с предварительной установкой
- •20.4. Регистры сдвига
- •20.4.1. Основная схема
- •20.5. Получение псевдослучайных последовательностей
- •20.6. Первоначальная обработка асинхронного сигнала
- •20.7. Систематический синтез последовательностньк схем
- •Входной мультиплексор
- •21. Микро-эвм
- •21.1. Основная структура микро-эвм
- •21.2. Принцип действия микропроцессора
- •21.3. Набор команд
- •Безусловные переходы
- •Маска прерываний
- •21.4. Отладочные средства
- •Язык ассемблера
- •21.5. Обзор микропроцессоров различного типа
- •21.6. Модульное построение микро-эвм
- •Микромощные запоминающие устройства
- •21.7. Периферийные устройства
- •Адаптер интерфейса периферийных устройств
- •Передача сигналов телетайпа
- •21.8. Минимальные система
- •22. Цифровые фильтры
- •22.1. Теорема о дискретизации (теорема о выборках)
- •Восстановление аналогового сигнала
- •22.2. Цифровая функция передачи фильтра
- •22.2.1. Описание во временной области
- •22.2.2. Описание в частотной области
- •22.3. Билинейное преобразование
- •22.4. Реализация цифровых фильтров
- •Простой пример реализации цифрового фильтра
- •Последовательная обработка сигнала
- •23. Передача данных и индикация
- •23.1. Соединительные линии
- •23.2. Защита данных
- •23.3. Статические цифровые индикаторы
- •23.4. Мультиплексные индикаторы
- •24. Цифро-аналоговые и аналого-цифровые преобразователи
- •24.1. Схемотехнические принципы ца-преобразователей
- •24.2. Построение ца-преобразователей с электронными ключами
- •Дифференциальный усилитель как токовый ключ
- •24.4. Основные принципы ац-преобразования
- •24.5. Точность ац-преобразоватю1ей
- •24.6. Построение ац-преобразователей
- •Компенсационный метод
- •Метод пилообразного напряжения
- •Метод двойного интегрирования
- •Автоматическая корректировка нуля
- •25. Измерительные схемы
- •25.1. Измерение напряжений
- •Увеличение диапазона управляемого напряжения
- •25.2. Измерение тока
- •Величина тока, вытекающего через точку 2, определяется соотношением
- •25.3. Измерительный выпрямитель
- •Двухполупериодный выпрямитель с заземленным выходом
- •Широкополосный Двухполупериодный выпрямитель
- •Измерение «истинного» эффективного значения
- •Термическое преобразование
- •Измерение мгновенных пиковых значений
- •26. Электронные регуляторы
- •26.1. Основные положения
- •26.2. Типы регуляторов
- •26.3. Управление нелинейными объектами
- •26.4. Отслеживающая синхронизация (автоподсгройка)
- •Динамическая характеристика
- •Расчет регулятора
Последовательная обработка сигнала
Из рассмотрения схемы, приведенной на рис. 2215, видно, что аппаратурные затраты существенны, хотя был выбран простейший пример. Поэтому возникает вопрос, в каких случаях окупаются большие аппаратурные затраты по сравнению, с относительно простой аналоговой реализацией. Пример такого рода- обработка сигналов с экстремально низкой частотой. Она без труда осуществляется с помощью цифровых схем, если выбрать низкую частоту выборки. Напротив, в аналоговых системах в этом случае требуются экстремально большие постоянные времени, которые не всегда могут быть реализованы.
При низких частотах выборки цифровой фильтр можно значительно упростить, выполняя все операции последовательно в одном и том же арифметическом устройстве. Промежуточные результаты запоминаются в буферной памяти до следующего тактового импульса. Для выполнения подобных операций очень удобно применить микро-ЭВМ. Для примера на рис. 2218 приведена блок-схема программы, соответствующая структурной схеме на рис. 2114. Для того чтобы следующее значение х фактически могло быть подано на вход устройства, длительность Тa такта фильтра должна быть больше, чем время обработки сигнала в устройстве.
Рис. 22.18. Блок-схема программы для моделирования цифрового фильтра первого порядка на микро-ЭВМ.
Для фильтра первого порядка при 8-разрядной длине слова с помощью стандартных систем (8080, 6800) можно получить времена обработки порядка 100 мкс. В этом случае максимальная частота выборки составляет, следовательно, 10 кГц. Для фильтров более высокого порядка и при большей длине слова она меньше. Поэтому для построения цифровых фильтров целесообразно использовать 16-разрядные микропроцессоры.
Особенно выгодно применять специальный процессор-фильтр, как, например, модель 2920 фирмы Intel. Он содержит аналого-цифровой и цифро-аналоговый преобразователи с 9-разрядной дискретизацией. Для обработки сигнала имеется ЗУПВ емкостью 40 слов по 25 бит и 25-разрядное арифметическое устройство. Программа реализации фильтра хранится в запрограммированном соответствующим образом ЭППЗУ на 192 слова по 24 разряда. При такой длине командного слова с помощью одной команды можно задать не только код операции, но и адрес источника и адрес передачи данных, как только будет проведено умножение на целое двоичное число. Отсюда следует, что для программирования фильтра второго порядка необходимо лишь 10 команд. Выполнение команды занимает 0,4 мкс. Поэтому даже при максимальной длине программы (192 команды) частота выборки составляет еще 13 кГц.
23. Передача данных и индикация
23.1. Соединительные линии
В предыдущих главах предполагалось, что сигналы от одной интегральной схемы к другим передаются без искажений. Однако при крутом фронте сигнала влиянием соединительных линий пренебречь нельзя. На практике принято считать, что простой провод можно использовать в качестве соединительной линии в случае, если время прохождения сигнала по нему на порядок меньше, чем время нарастания сигнала на выходе схемы. Отсюда получается следующее ограничение: максимальная длина соединения должна составлять 10 см на наносекунду фронта сигнала. Если длина проводника будет большей, возникнут существенные искажения формы импульса, отражения и слабо- или сильнозатухающие колебания. Такие ошибки могут быть исключены введением линий с определенным волновым сопротивлением (коаксиальные кабели, полосковые линии), которые нагружаются на согласованную нагрузку. Их волновое сопротивление обычно лежит в диапазоне 50-300 Ом.
Полосковые линии могут быть реализованы, например, следующим образом: соединительные дорожки выполняются на нижней стороне платы, а сторона, на которой расположены компоненты, полностью металлизируется. Конечно, должны быть предусмотрены небольшие участки для изоляции выводов компонентов. При этом все соединительные дорожки, расположенные на нижней стороне платы» являются полосковыми линиями. Если проводящая плата имеет относительную диэлектрическую постоянную r = 5 и толщину d = 1,2 мм, то при ширине проводящей дорожки w == 1 мм волновое сопротивление составляет 75 Ом [23.1].
Для соединения одной платы с другой можно использовать коаксиальную линию. Однако она обладает существенным недостатком: ее сложно подводить к разъемам. Значительно проще передавать сигнал по двум скрученным простым, изолированным проводам, которые можно подсоединить к двум соседним контактам разъема. Если число витков составляет 100 на метр, то волновое сопротивление равно 1100м [23.1].
Рис. 23,1. Передача данных по скрученной проводной линии с несимметричным управлением.
Простейшая возможность передачи данных по витой линии показана на рис. 23.1. Из-за требуемого низкоомного оконечного сопротивления передающий элемент должен обеспечивать соответственно большой выходной ток. Такие элементы, изготовленные в интегральном виде, известны как формирователи, работающие на линию. В качестве приемника целесообразно применять логические элементы типа триггера Шмитта (элементы с гистерезисом) для восстановления фронтов импульса.
Несимметричная линия передачи сигнала, представленная на рис. 33.1, относительно восприимчива к внешним помехам, например к импульсам напряжения на земляном (общем) проводе. По этой причине в большинстве систем выгоднее использовать симметричные линии передачи сигнала, подобные показанной на рис. 23.2. При этом на обоих проводах витой линии формируется парафазный сигнал, а в качестве приемного устройства служит компаратор. Информация различается не по абсолютному значению уровня напряжения, а по полярности дифференциального напряжения. Импульсная помеха вызывает лишь синфазное отклонение, которое благодаря использованию компаратора не нарушает работы.
При формировании парафазного сигнала необходимо исключить возможность возникновения временного сдвига обоих сигналов относительно друг друга. По этой причине при использовании ТТЛ- схем вместо простых инверторов применяют специальные схемы с парафазным выходом (например, Am 26LS31 фирмы Advanced Micro Devices).
Рис. 23.2. Передача данных по скрученной проводной линии с симметричным управлением.
В ЭСЛ- элементах часто используется парафазный выход. Поэтому их очень удобно использовать для симметричной передачи сигнала. Чтобы в полной мере реализовать их высокое быстродействие, в качестве компаратора применяют простой дифференциальный усилитель, который по входу совместим с ЭСЛ- схемами. Его называют приемником линии. Соответствующая схема показана на рис. 23.3.
Рис. 23.3. Передача данных в ЭСЛ- устройстве по скрученной проводной линии с симметричным управлением.
Функционирование линии парафазной передачи с помощью компаратора на рис. 23.2 и 23.3 возможно только тогда, когда не превышается диапазон изменения синфазного сигнала. Если возникает очень большая разность потенциалов (например, в цифровых вольтметрах с плавающей землей), дифференциальный способ можно реализовать с помощью оптрона (рис. 23.4). Используя фототранзистор в качестве приемника, можно получить выходной сигнал, совместимый с ТТЛ- схемами. В этом случае скорость передачи ограничена значением порядка 100 кбит/с. Используя в качестве приемника фотодиод, можно достичь значительно большей скорости. Однако из-за малой величины фототока необходимо вводить последовательно с фотоприемником усилитель. Такая оптическая связь с интегральным усилителем позволяет повысить скорость передачи до 20Мбит/с (например, в модели 5082-4364 фирмы Hewlett-Packard).