Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вопросы на зачет. Микробиологии и биотехнологии.docx
Скачиваний:
47
Добавлен:
24.12.2021
Размер:
108.13 Кб
Скачать

12.Литотрофные микроорганизмы, их роль в биогеоценозе.

Литотрофы — это микроорганизмы, использующие энергию неорганических соединений: водорода, сероводорода, аммония, металлов с переменной валентностью, а также других соединений, которые могут служить источником электронов. Окислителем, на который передаются электроны, может быть либо кислород, либо другие окисленные соединения: сульфат, нитрат, углекислота и прочие. При переносе электронов от энергетического субстрата к окислителю выделяется энергия, которую организмы запасают и используют в процессах метаболизма.

Литотрофные микроорганизмы участвуют в глобальных циклах важнейших элементов на нашей планете: углерода, азота, серы, железа. Часто осуществляемые ими химические реакции могут оказывать большое влияние на окружающий мир. Например, серобактерии окисляют сероводород, образующийся в донных осадках; если бы этого не было, сероводород вступал бы в реакцию с растворенным в воде кислородом, делая водоем безжизненным.

13.Органотрофные микроорганизмы, их роль в биогеоценозе.

Органотрофные микроорганизмы - используют органические вещества в качестве окисляемых субстратов (доноров электронов) для получения восстановителя (фотоорганотрофы — многие пурпурные несерные бактерии), а также энергии (хемоорганотрофы — большинство бактерий, грибы, простейшие). Некоторые органотрофные микроорганизмы (например, Paracoccus denitrificans) получают энергию, окисляя органические соединения (метанол, формиат), но ассимилируют CO2 по автотрофному пути, то есть являются хемоорганоавтотрофами. Ряд пурпурных бактерий используют как источник энергии свет, а как донор электронов — метанол, формиат, ассимилируя CO2 по афтотрофному пути. Такой тип питания называется фотоорганоавтотрофией. Однако большинство органотрофных микроорганизмов используют органические субстраты и как источники энергии, и как источники углерода.

14.Роль микроорганизмов в круговороте веществ в природе.

Круговорот веществ в природе — циклы превращения химических элементов, из которых построены живые существа.

Этапы круговорота различных химических элементов осуществляется микроорганизмами разных групп. Непрерывное существование каждой группы зависит от химических превращений элементов, осуществляемых другими группами микроорганизмов. Жизнь на Земле непрерывна, поскольку все основные элементы жизни подвергаются циклическим превращениям, в значительной степени определяемыми микроорганизмами.

Титаническая роль микроорганизмов в круговороте веществ в природе имеет исключительное значение для поддержания динамического равновесия биосферы.

Углерод. Атмосферный воздух содержит чуть больше 0,03 % углерода в виде углекислого газа. Фотоситетические бактерии утилизируют углекислый газ в процессе фотосинтеза. Причем фотосинтетическая продуктивность бактерий настолько велика, что запас углекислого газа в атмосфере был бы исчерпан за 20 лет. В настоящее время считается, что углекислого газа на Земле, при учете его запасов в океанах и запасов угля, хватит на 1000–3000 лет. Это объясняется активным участием микроорганизмов в процессах образования углекислого газа.

Небольшая часть минерализованного углерода (1–1,5 %) поступает в атмосферу в форме метана. Метан образуется из органических веществ в местах, недоступных для кислорода воздуха (в почве тундр, на рисовых полях, в рубце жвачных животных), затем поступает в атмосферу и окисляется ОН–радикалами через СО до СО2 с участием бактерий.

Главным источником углерода для анаэробных почвенных микроорганизмов являются растительные остатки, содержащие пектиновые вещества и целлюлозу.

Азот. В круговороте азотсодержащих веществ участвуют:

  1. аммонификаторы, вызывающие гниение трупов животных, остатков растений, разложение мочевины с образованием азотистых веществ и аммиака. Это аэробные бактерии Bacillus subtilis, Bacillus mesentericus, Serratia marcescens; факультативноанаэробные бактерии рода Proteus; анаэробы Clostridium sporogenes, Clostridium putrificum; уробактерии, расщепляющие мочевину (Urobacillus pasteuri, Sarcina urea); грибы рода Aspergillus, Mucor, Penicillium.

  2. нитрифицирующие бактерии, которые нитрифицируют аммоний в хорошо аэрируемых почвах. Nitrosomonas (окисляют аммиак до азотистой кислоты, образуя нитриты) и Nitrobacter (превращают азотистую кислоту в азотную и нитраты). Нитриты и нитраты усваиваются высшими растениями. В отсутствие кислорода из нитрата образуется молекулярный азот, т. е. происходит денитрификация, которая ведет к потере азота почвой. Прокариоты, имеющие ферменты нитрогеназу, способны к азотфиксации (превращению атмосферного азота в органические соединения). Нитрогеназа работает только в анаэробных условиях, в присутствии кислорода фермент необратимо инактивируется.

  1. азотфиксирующие бактерии, которые в процессе своей жизнедеятельности из молекулярного азота синтезируют белки и другие органические соединения азота, используемые растениями. Многие азотофиксирующие бактерии могут жить сами по себе, некоторые виды могут обитать в клубеньках бобовых растений. Эукариоты не способны к азотофиксации, поэтому некоторые бактерии в симбиозе с высшими растениями обеспечивают их азотом (симбиотические азотфиксирующие клубеньковые бактерии). Отмирая, растения обогащают почву соединениями азота.

Среди почвенных аэробных спорообразующих бактерий есть олигонитрофильные виды, которые хорошо развиваются на безазотистой среде, так как способны усваивать атмосферный азот. Эти микроорганизмы характеризуются слабой азотфиксирующей способностью, однако их накопление в почве может значительно содействовать обогащению ее азотом и повышать плодородие.

Есть и небиологическая фиксация азота. Производя азотные удобрения, человек успешно конкурирует с биологическими фиксаторами и биосферой в количестве фиксируемого азота.

Фосфор. Спороносные бактерии переводят нерастворимые фосфорные соединения в легко растворимые различными механизмами: растворением трикальцийфосфата, переводом фосфоритов в апатиты или фосфитов в фосфаты, минерализацией органофосфатов в результате ферментативной деятельности бактерий и выделения ими кислот. Азотфиксирующие цианобактерии способны утилизировать ионы фосфора из воды.

Сера. Сульфатредуцирующие бактерии участвуют в процессах образования нефти, сероводорода в морях, почвах, лечебных грязях. В почвах наибольшие количества сероводорода образуются при диссимиляционном восстановлении сульфатов, осуществляемом сульфатредуцирующими бактериями. Этот сероводород может быть окислен анаэробными фототрофными бактериями до серы и сульфатов, доступных для усвоения корнями растений. Образование сероводорода сульфатредуцирующими бактериями может приносить вред, вызывая коррозию металлических подводных и подземных сооружений.