
- •Preface
- •Biological Vision Systems
- •Visual Representations from Paintings to Photographs
- •Computer Vision
- •The Limitations of Standard 2D Images
- •3D Imaging, Analysis and Applications
- •Book Objective and Content
- •Acknowledgements
- •Contents
- •Contributors
- •2.1 Introduction
- •Chapter Outline
- •2.2 An Overview of Passive 3D Imaging Systems
- •2.2.1 Multiple View Approaches
- •2.2.2 Single View Approaches
- •2.3 Camera Modeling
- •2.3.1 Homogeneous Coordinates
- •2.3.2 Perspective Projection Camera Model
- •2.3.2.1 Camera Modeling: The Coordinate Transformation
- •2.3.2.2 Camera Modeling: Perspective Projection
- •2.3.2.3 Camera Modeling: Image Sampling
- •2.3.2.4 Camera Modeling: Concatenating the Projective Mappings
- •2.3.3 Radial Distortion
- •2.4 Camera Calibration
- •2.4.1 Estimation of a Scene-to-Image Planar Homography
- •2.4.2 Basic Calibration
- •2.4.3 Refined Calibration
- •2.4.4 Calibration of a Stereo Rig
- •2.5 Two-View Geometry
- •2.5.1 Epipolar Geometry
- •2.5.2 Essential and Fundamental Matrices
- •2.5.3 The Fundamental Matrix for Pure Translation
- •2.5.4 Computation of the Fundamental Matrix
- •2.5.5 Two Views Separated by a Pure Rotation
- •2.5.6 Two Views of a Planar Scene
- •2.6 Rectification
- •2.6.1 Rectification with Calibration Information
- •2.6.2 Rectification Without Calibration Information
- •2.7 Finding Correspondences
- •2.7.1 Correlation-Based Methods
- •2.7.2 Feature-Based Methods
- •2.8 3D Reconstruction
- •2.8.1 Stereo
- •2.8.1.1 Dense Stereo Matching
- •2.8.1.2 Triangulation
- •2.8.2 Structure from Motion
- •2.9 Passive Multiple-View 3D Imaging Systems
- •2.9.1 Stereo Cameras
- •2.9.2 3D Modeling
- •2.9.3 Mobile Robot Localization and Mapping
- •2.10 Passive Versus Active 3D Imaging Systems
- •2.11 Concluding Remarks
- •2.12 Further Reading
- •2.13 Questions
- •2.14 Exercises
- •References
- •3.1 Introduction
- •3.1.1 Historical Context
- •3.1.2 Basic Measurement Principles
- •3.1.3 Active Triangulation-Based Methods
- •3.1.4 Chapter Outline
- •3.2 Spot Scanners
- •3.2.1 Spot Position Detection
- •3.3 Stripe Scanners
- •3.3.1 Camera Model
- •3.3.2 Sheet-of-Light Projector Model
- •3.3.3 Triangulation for Stripe Scanners
- •3.4 Area-Based Structured Light Systems
- •3.4.1 Gray Code Methods
- •3.4.1.1 Decoding of Binary Fringe-Based Codes
- •3.4.1.2 Advantage of the Gray Code
- •3.4.2 Phase Shift Methods
- •3.4.2.1 Removing the Phase Ambiguity
- •3.4.3 Triangulation for a Structured Light System
- •3.5 System Calibration
- •3.6 Measurement Uncertainty
- •3.6.1 Uncertainty Related to the Phase Shift Algorithm
- •3.6.2 Uncertainty Related to Intrinsic Parameters
- •3.6.3 Uncertainty Related to Extrinsic Parameters
- •3.6.4 Uncertainty as a Design Tool
- •3.7 Experimental Characterization of 3D Imaging Systems
- •3.7.1 Low-Level Characterization
- •3.7.2 System-Level Characterization
- •3.7.3 Characterization of Errors Caused by Surface Properties
- •3.7.4 Application-Based Characterization
- •3.8 Selected Advanced Topics
- •3.8.1 Thin Lens Equation
- •3.8.2 Depth of Field
- •3.8.3 Scheimpflug Condition
- •3.8.4 Speckle and Uncertainty
- •3.8.5 Laser Depth of Field
- •3.8.6 Lateral Resolution
- •3.9 Research Challenges
- •3.10 Concluding Remarks
- •3.11 Further Reading
- •3.12 Questions
- •3.13 Exercises
- •References
- •4.1 Introduction
- •Chapter Outline
- •4.2 Representation of 3D Data
- •4.2.1 Raw Data
- •4.2.1.1 Point Cloud
- •4.2.1.2 Structured Point Cloud
- •4.2.1.3 Depth Maps and Range Images
- •4.2.1.4 Needle map
- •4.2.1.5 Polygon Soup
- •4.2.2 Surface Representations
- •4.2.2.1 Triangular Mesh
- •4.2.2.2 Quadrilateral Mesh
- •4.2.2.3 Subdivision Surfaces
- •4.2.2.4 Morphable Model
- •4.2.2.5 Implicit Surface
- •4.2.2.6 Parametric Surface
- •4.2.2.7 Comparison of Surface Representations
- •4.2.3 Solid-Based Representations
- •4.2.3.1 Voxels
- •4.2.3.3 Binary Space Partitioning
- •4.2.3.4 Constructive Solid Geometry
- •4.2.3.5 Boundary Representations
- •4.2.4 Summary of Solid-Based Representations
- •4.3 Polygon Meshes
- •4.3.1 Mesh Storage
- •4.3.2 Mesh Data Structures
- •4.3.2.1 Halfedge Structure
- •4.4 Subdivision Surfaces
- •4.4.1 Doo-Sabin Scheme
- •4.4.2 Catmull-Clark Scheme
- •4.4.3 Loop Scheme
- •4.5 Local Differential Properties
- •4.5.1 Surface Normals
- •4.5.2 Differential Coordinates and the Mesh Laplacian
- •4.6 Compression and Levels of Detail
- •4.6.1 Mesh Simplification
- •4.6.1.1 Edge Collapse
- •4.6.1.2 Quadric Error Metric
- •4.6.2 QEM Simplification Summary
- •4.6.3 Surface Simplification Results
- •4.7 Visualization
- •4.8 Research Challenges
- •4.9 Concluding Remarks
- •4.10 Further Reading
- •4.11 Questions
- •4.12 Exercises
- •References
- •1.1 Introduction
- •Chapter Outline
- •1.2 A Historical Perspective on 3D Imaging
- •1.2.1 Image Formation and Image Capture
- •1.2.2 Binocular Perception of Depth
- •1.2.3 Stereoscopic Displays
- •1.3 The Development of Computer Vision
- •1.3.1 Further Reading in Computer Vision
- •1.4 Acquisition Techniques for 3D Imaging
- •1.4.1 Passive 3D Imaging
- •1.4.2 Active 3D Imaging
- •1.4.3 Passive Stereo Versus Active Stereo Imaging
- •1.5 Twelve Milestones in 3D Imaging and Shape Analysis
- •1.5.1 Active 3D Imaging: An Early Optical Triangulation System
- •1.5.2 Passive 3D Imaging: An Early Stereo System
- •1.5.3 Passive 3D Imaging: The Essential Matrix
- •1.5.4 Model Fitting: The RANSAC Approach to Feature Correspondence Analysis
- •1.5.5 Active 3D Imaging: Advances in Scanning Geometries
- •1.5.6 3D Registration: Rigid Transformation Estimation from 3D Correspondences
- •1.5.7 3D Registration: Iterative Closest Points
- •1.5.9 3D Local Shape Descriptors: Spin Images
- •1.5.10 Passive 3D Imaging: Flexible Camera Calibration
- •1.5.11 3D Shape Matching: Heat Kernel Signatures
- •1.6 Applications of 3D Imaging
- •1.7 Book Outline
- •1.7.1 Part I: 3D Imaging and Shape Representation
- •1.7.2 Part II: 3D Shape Analysis and Processing
- •1.7.3 Part III: 3D Imaging Applications
- •References
- •5.1 Introduction
- •5.1.1 Applications
- •5.1.2 Chapter Outline
- •5.2 Mathematical Background
- •5.2.1 Differential Geometry
- •5.2.2 Curvature of Two-Dimensional Surfaces
- •5.2.3 Discrete Differential Geometry
- •5.2.4 Diffusion Geometry
- •5.2.5 Discrete Diffusion Geometry
- •5.3 Feature Detectors
- •5.3.1 A Taxonomy
- •5.3.2 Harris 3D
- •5.3.3 Mesh DOG
- •5.3.4 Salient Features
- •5.3.5 Heat Kernel Features
- •5.3.6 Topological Features
- •5.3.7 Maximally Stable Components
- •5.3.8 Benchmarks
- •5.4 Feature Descriptors
- •5.4.1 A Taxonomy
- •5.4.2 Curvature-Based Descriptors (HK and SC)
- •5.4.3 Spin Images
- •5.4.4 Shape Context
- •5.4.5 Integral Volume Descriptor
- •5.4.6 Mesh Histogram of Gradients (HOG)
- •5.4.7 Heat Kernel Signature (HKS)
- •5.4.8 Scale-Invariant Heat Kernel Signature (SI-HKS)
- •5.4.9 Color Heat Kernel Signature (CHKS)
- •5.4.10 Volumetric Heat Kernel Signature (VHKS)
- •5.5 Research Challenges
- •5.6 Conclusions
- •5.7 Further Reading
- •5.8 Questions
- •5.9 Exercises
- •References
- •6.1 Introduction
- •Chapter Outline
- •6.2 Registration of Two Views
- •6.2.1 Problem Statement
- •6.2.2 The Iterative Closest Points (ICP) Algorithm
- •6.2.3 ICP Extensions
- •6.2.3.1 Techniques for Pre-alignment
- •Global Approaches
- •Local Approaches
- •6.2.3.2 Techniques for Improving Speed
- •Subsampling
- •Closest Point Computation
- •Distance Formulation
- •6.2.3.3 Techniques for Improving Accuracy
- •Outlier Rejection
- •Additional Information
- •Probabilistic Methods
- •6.3 Advanced Techniques
- •6.3.1 Registration of More than Two Views
- •Reducing Error Accumulation
- •Automating Registration
- •6.3.2 Registration in Cluttered Scenes
- •Point Signatures
- •Matching Methods
- •6.3.3 Deformable Registration
- •Methods Based on General Optimization Techniques
- •Probabilistic Methods
- •6.3.4 Machine Learning Techniques
- •Improving the Matching
- •Object Detection
- •6.4 Quantitative Performance Evaluation
- •6.5 Case Study 1: Pairwise Alignment with Outlier Rejection
- •6.6 Case Study 2: ICP with Levenberg-Marquardt
- •6.6.1 The LM-ICP Method
- •6.6.2 Computing the Derivatives
- •6.6.3 The Case of Quaternions
- •6.6.4 Summary of the LM-ICP Algorithm
- •6.6.5 Results and Discussion
- •6.7 Case Study 3: Deformable ICP with Levenberg-Marquardt
- •6.7.1 Surface Representation
- •6.7.2 Cost Function
- •Data Term: Global Surface Attraction
- •Data Term: Boundary Attraction
- •Penalty Term: Spatial Smoothness
- •Penalty Term: Temporal Smoothness
- •6.7.3 Minimization Procedure
- •6.7.4 Summary of the Algorithm
- •6.7.5 Experiments
- •6.8 Research Challenges
- •6.9 Concluding Remarks
- •6.10 Further Reading
- •6.11 Questions
- •6.12 Exercises
- •References
- •7.1 Introduction
- •7.1.1 Retrieval and Recognition Evaluation
- •7.1.2 Chapter Outline
- •7.2 Literature Review
- •7.3 3D Shape Retrieval Techniques
- •7.3.1 Depth-Buffer Descriptor
- •7.3.1.1 Computing the 2D Projections
- •7.3.1.2 Obtaining the Feature Vector
- •7.3.1.3 Evaluation
- •7.3.1.4 Complexity Analysis
- •7.3.2 Spin Images for Object Recognition
- •7.3.2.1 Matching
- •7.3.2.2 Evaluation
- •7.3.2.3 Complexity Analysis
- •7.3.3 Salient Spectral Geometric Features
- •7.3.3.1 Feature Points Detection
- •7.3.3.2 Local Descriptors
- •7.3.3.3 Shape Matching
- •7.3.3.4 Evaluation
- •7.3.3.5 Complexity Analysis
- •7.3.4 Heat Kernel Signatures
- •7.3.4.1 Evaluation
- •7.3.4.2 Complexity Analysis
- •7.4 Research Challenges
- •7.5 Concluding Remarks
- •7.6 Further Reading
- •7.7 Questions
- •7.8 Exercises
- •References
- •8.1 Introduction
- •Chapter Outline
- •8.2 3D Face Scan Representation and Visualization
- •8.3 3D Face Datasets
- •8.3.1 FRGC v2 3D Face Dataset
- •8.3.2 The Bosphorus Dataset
- •8.4 3D Face Recognition Evaluation
- •8.4.1 Face Verification
- •8.4.2 Face Identification
- •8.5 Processing Stages in 3D Face Recognition
- •8.5.1 Face Detection and Segmentation
- •8.5.2 Removal of Spikes
- •8.5.3 Filling of Holes and Missing Data
- •8.5.4 Removal of Noise
- •8.5.5 Fiducial Point Localization and Pose Correction
- •8.5.6 Spatial Resampling
- •8.5.7 Feature Extraction on Facial Surfaces
- •8.5.8 Classifiers for 3D Face Matching
- •8.6 ICP-Based 3D Face Recognition
- •8.6.1 ICP Outline
- •8.6.2 A Critical Discussion of ICP
- •8.6.3 A Typical ICP-Based 3D Face Recognition Implementation
- •8.6.4 ICP Variants and Other Surface Registration Approaches
- •8.7 PCA-Based 3D Face Recognition
- •8.7.1 PCA System Training
- •8.7.2 PCA Training Using Singular Value Decomposition
- •8.7.3 PCA Testing
- •8.7.4 PCA Performance
- •8.8 LDA-Based 3D Face Recognition
- •8.8.1 Two-Class LDA
- •8.8.2 LDA with More than Two Classes
- •8.8.3 LDA in High Dimensional 3D Face Spaces
- •8.8.4 LDA Performance
- •8.9 Normals and Curvature in 3D Face Recognition
- •8.9.1 Computing Curvature on a 3D Face Scan
- •8.10 Recent Techniques in 3D Face Recognition
- •8.10.1 3D Face Recognition Using Annotated Face Models (AFM)
- •8.10.2 Local Feature-Based 3D Face Recognition
- •8.10.2.1 Keypoint Detection and Local Feature Matching
- •8.10.2.2 Other Local Feature-Based Methods
- •8.10.3 Expression Modeling for Invariant 3D Face Recognition
- •8.10.3.1 Other Expression Modeling Approaches
- •8.11 Research Challenges
- •8.12 Concluding Remarks
- •8.13 Further Reading
- •8.14 Questions
- •8.15 Exercises
- •References
- •9.1 Introduction
- •Chapter Outline
- •9.2 DEM Generation from Stereoscopic Imagery
- •9.2.1 Stereoscopic DEM Generation: Literature Review
- •9.2.2 Accuracy Evaluation of DEMs
- •9.2.3 An Example of DEM Generation from SPOT-5 Imagery
- •9.3 DEM Generation from InSAR
- •9.3.1 Techniques for DEM Generation from InSAR
- •9.3.1.1 Basic Principle of InSAR in Elevation Measurement
- •9.3.1.2 Processing Stages of DEM Generation from InSAR
- •The Branch-Cut Method of Phase Unwrapping
- •The Least Squares (LS) Method of Phase Unwrapping
- •9.3.2 Accuracy Analysis of DEMs Generated from InSAR
- •9.3.3 Examples of DEM Generation from InSAR
- •9.4 DEM Generation from LIDAR
- •9.4.1 LIDAR Data Acquisition
- •9.4.2 Accuracy, Error Types and Countermeasures
- •9.4.3 LIDAR Interpolation
- •9.4.4 LIDAR Filtering
- •9.4.5 DTM from Statistical Properties of the Point Cloud
- •9.5 Research Challenges
- •9.6 Concluding Remarks
- •9.7 Further Reading
- •9.8 Questions
- •9.9 Exercises
- •References
- •10.1 Introduction
- •10.1.1 Allometric Modeling of Biomass
- •10.1.2 Chapter Outline
- •10.2 Aerial Photo Mensuration
- •10.2.1 Principles of Aerial Photogrammetry
- •10.2.1.1 Geometric Basis of Photogrammetric Measurement
- •10.2.1.2 Ground Control and Direct Georeferencing
- •10.2.2 Tree Height Measurement Using Forest Photogrammetry
- •10.2.2.2 Automated Methods in Forest Photogrammetry
- •10.3 Airborne Laser Scanning
- •10.3.1 Principles of Airborne Laser Scanning
- •10.3.1.1 Lidar-Based Measurement of Terrain and Canopy Surfaces
- •10.3.2 Individual Tree-Level Measurement Using Lidar
- •10.3.2.1 Automated Individual Tree Measurement Using Lidar
- •10.3.3 Area-Based Approach to Estimating Biomass with Lidar
- •10.4 Future Developments
- •10.5 Concluding Remarks
- •10.6 Further Reading
- •10.7 Questions
- •References
- •11.1 Introduction
- •Chapter Outline
- •11.2 Volumetric Data Acquisition
- •11.2.1 Computed Tomography
- •11.2.1.1 Characteristics of 3D CT Data
- •11.2.2 Positron Emission Tomography (PET)
- •11.2.2.1 Characteristics of 3D PET Data
- •Relaxation
- •11.2.3.1 Characteristics of the 3D MRI Data
- •Image Quality and Artifacts
- •11.2.4 Summary
- •11.3 Surface Extraction and Volumetric Visualization
- •11.3.1 Surface Extraction
- •Example: Curvatures and Geometric Tools
- •11.3.2 Volume Rendering
- •11.3.3 Summary
- •11.4 Volumetric Image Registration
- •11.4.1 A Hierarchy of Transformations
- •11.4.1.1 Rigid Body Transformation
- •11.4.1.2 Similarity Transformations and Anisotropic Scaling
- •11.4.1.3 Affine Transformations
- •11.4.1.4 Perspective Transformations
- •11.4.1.5 Non-rigid Transformations
- •11.4.2 Points and Features Used for the Registration
- •11.4.2.1 Landmark Features
- •11.4.2.2 Surface-Based Registration
- •11.4.2.3 Intensity-Based Registration
- •11.4.3 Registration Optimization
- •11.4.3.1 Estimation of Registration Errors
- •11.4.4 Summary
- •11.5 Segmentation
- •11.5.1 Semi-automatic Methods
- •11.5.1.1 Thresholding
- •11.5.1.2 Region Growing
- •11.5.1.3 Deformable Models
- •Snakes
- •Balloons
- •11.5.2 Fully Automatic Methods
- •11.5.2.1 Atlas-Based Segmentation
- •11.5.2.2 Statistical Shape Modeling and Analysis
- •11.5.3 Summary
- •11.6 Diffusion Imaging: An Illustration of a Full Pipeline
- •11.6.1 From Scalar Images to Tensors
- •11.6.2 From Tensor Image to Information
- •11.6.3 Summary
- •11.7 Applications
- •11.7.1 Diagnosis and Morphometry
- •11.7.2 Simulation and Training
- •11.7.3 Surgical Planning and Guidance
- •11.7.4 Summary
- •11.8 Concluding Remarks
- •11.9 Research Challenges
- •11.10 Further Reading
- •Data Acquisition
- •Surface Extraction
- •Volume Registration
- •Segmentation
- •Diffusion Imaging
- •Software
- •11.11 Questions
- •11.12 Exercises
- •References
- •Index
302 |
B. Bustos and I. Sipiran |
7.7 Questions
1.Explain the difference between shape retrieval and shape recognition and give an example application of each.
2.Why is the matching of shapes that can deform (such as bending deformation) more difficult in general than matching of rigid shapes?
3.Why is the matching using partial views of an object (for example, when using single viewpoint 3D scans) more difficult in general than when the complete object surface is available in the query shape?
4.What properties of shape descriptor are desirable when addressing partial matching problems and non-rigid matching problems?
5.Describe the “bag of features” approach to shape retrieval.
7.8 Exercises
1.In the interest point detection of the salient spectral geometric features, the authors recommended to set the number of eigenvectors in the process to 100. Implement the interest point detection method using a higher number of eigenvectors. Investigate the relation between the number of eigenvectors, the number of interest points detected and the magnitude of the scales of them.
2.Consider a neighborhood where four points are coplanar and three of them form an equilateral triangle. The forth point lies in the barycenter of the triangle. Let a be the length of a triangle’s side. Compare the triangle area with the following quantities:
•Voronoi region of p by using only Eq. (7.21).
•Voronoi region of p taking into account the obtuse triangles as described in Sec. 7.3.3.
Argue why it is necessary to be aware of obtuse triangles while calculating the Voronoi region area.
3.Prove that the Laplace-Beltrami operator is not invariant to scale changes. Additionally, suppose a uniform mesh which have edges with the same length denoted by a. Conjecture what happens with the operator when a tends to zero.
4.Explain why the quantity Kt (x, y) is a good choice for the spatial factor in shape Google technique?
5.The direction of the normal in the spin images defines a horizontal line in the middle of the spin image. A little variation in this normal modifies the image, rotating the pixels around the central point in the first column of the image. Propose a method to tackle with little variation of the normals.
6.The spin image in a point p depends of the direction of its normal. Let suppose an object A with normals computed in each vertex and an object B, equal to A, with opposite normals. Propose a variation to spin image computation in order to generate the same descriptor for corresponding points in A and B.
7 3D Shape Matching for Retrieval and Recognition |
303 |
7.Implement the spin images construction modifying the accumulation method. Instead of using bilinear interpolation, use a Gaussian weight centered in the corresponding pixel. Is this method more robust against noise and normal variations?
References
1.SHREC—Shape Retrieval Contest: http://www.aimatshape.net/event/SHREC
2.CGAL, Computational Geometry Algorithms Library: http://www.cgal.org
3.Adan, A., Adan, M.: A flexible similarity measure for 3D shapes recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1507–1520 (2004)
4.Agathos, A., Pratikakis, I., Papadakis, P., Perantonis, S.J., Azariadis, P.N., Sapidis, N.S.: Retrieval of 3D articulated objects using a graph-based representation. In: Spagnuolo, M., Pratikakis, I., Veltkamp, R.C., Theoharis, T. (eds.) Proc. Workshop on 3D Object Retr. (3DOR), pp. 29–36. Eurographics Association, Geneve (2009)
5.Akgül, C.B., Sankur, B., Yemez, Y., Schmitt, F.: Similarity score fusion by ranking risk minimization for 3D object retrieval. In: Perantonis, S.J., Sapidis, N., Spagnuolo, M., Thalmann, D. (eds.) Proc. Workshop on 3D Object Retr. (3DOR), pp. 41–48. Eurographics Association, Geneve (2008)
6.Akgul, C.B., Sankur, B., Yemez, Y., Schmitt, F.: 3D model retrieval using probability densitybased shape descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 1117–1133 (2009)
7.Assfalg, J., Bimbo, A.D., Pala, P.: Spin images for retrieval of 3D objects by local and global similarity. In: Int. Conf. Pattern Recognit., pp. 906–909 (2004)
8.Assfalg, J., D’Amico, G., Bimbo, A.D., Pala, P.: 3D content-based retrieval with spin images. In: Proc. IEEE Int. Conf. Multimedia and Expo, pp. 771–774. IEEE Press, New York (2004)
9.Atmosukarto, I., Wilamowska, K., Heike, C., Shapiro, L.G.: 3D object classification using salient point patterns with application to craniofacial research. Pattern Recognit. 43(4), 1502– 1517 (2010)
10.Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press/AddisonWesley, New York (1999)
11.Belkin, M., Sun, J., Wang, Y.: Discrete Laplace operator on meshed surfaces. In: Teillaud, M., Welzl, E. (eds.) Proc. Symposium on Comput. Geom, pp. 278–287. ACM, New York (2008)
12.Belkin, M., Sun, J., Wang, Y.: Constructing Laplace operator from point clouds in rd. In: Mathieu, C. (ed.) Proc. ACM-SIAM Symposium on Discrete Algorithms, pp. 1031–1040. SIAM, Philadelphia (2009)
13.Berretti, S., Bimbo, A.D., Pala, P., Silva-Mata, F.: Face recognition by SVMs classification and manifold learning of 2D and 3D radial geodesic distances. In: Perantonis, S.J., Sapidis, N., Spagnuolo, M., Thalmann, D. (eds.) Proc. Workshop on 3D Object Retr. (3DOR), pp. 57– 64. Eurographics Association, Geneve (2008)
14.Besl, P.J., McKay, N.D.: A method for registration of 3D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)
15.Bimbo, A.D., Pala, P.: Content-based retrieval of 3D models. ACM Trans. Multimed. Comput. Commun. Appl. 2(1), 20–43 (2006)
16.Bobenko, A.I.: Delaunay triangulations of polyhedral surfaces, a discrete Laplace-Beltrami operator and applications. In: Teillaud, M., Welzl, E. (eds.) Proc. Symposium on Comput. Geom., p. 38. ACM, New York (2008)
17.Boyer, E., Bronstein, A.M., Bronstein, M.M., Bustos, B., Darom, T., Horaud, R., Hotz, I., Keller, Y., Keustermans, J., Kovnatsky, A., Litman, R., Reininghaus, J., Sipiran, I., Smeets, D., Suetens, P., Vandermeulen, D., Zaharescu, A., Zobel, V.: SHREC 2011: robust feature de-
304 |
B. Bustos and I. Sipiran |
tection and description benchmark. In: Proc. Workshop on 3D Object Retrieval (3DOR’11). Eurographics Association, Geneve (2011). doi:10.2312/3DOR/3DOR11/071-078
18.Bronstein, A., Bronstein, M., Kimmel, R.: Numerical Geometry of Non-rigid Shapes. Springer, Berlin (2008)
19.Bronstein, A.M., Bronstein, M.M.: Regularized partial matching of rigid shapes. In: Forsyth, D.A., Torr, P.H.S., Zisserman, A. (eds.) Proc. Eur. Conf. Comput. Vis. (ECCV). Lecture Notes in Computer Science, vol. 5303, pp. 143–154. Springer, Berlin (2008)
20.Bronstein, A.M., Bronstein, M.M., Bruckstein, A.M., Kimmel, R.: Partial similarity of objects, or how to compare a centaur to a horse. Int. J. Comput. Vis. 84(2), 163–183 (2009)
21.Bronstein, A.M., Bronstein, M.M., Bustos, B., Castellani, U., Crisani, M., Falcidieno, B., Guibas, L.J., Kokkinos, I., Murino, V., Sipiran, I., Ovsjanikov, M., Patanè, G., Spagnuolo, M., Sun, J.: SHREC 2010: robust feature detection and description benchmark. In: Proc. Workshop on 3D Object Retrieval (3DOR’10). Eurographics Association, Geneve (2010)
22.Bronstein, A.M., Bronstein, M.M., Castellani, U., Dubrovina, A., Guibas, L.J., Horaud, R., Kimmel, R., Knossow, D., von Lavante, E., Mateus, D., Ovsjanikov, M., Sharma, A.: SHREC 2010: robust correspondence benchmark. In: Proc. Workshop on 3D Object Retrieval (3DOR’10). Eurographics Association, Geneve (2010)
23.Bronstein, A.M., Bronstein, M.M., Castellani, U., Falcidieno, B., Fusiello, A., Godil, A., Guibas, L., Kokkinos, I., Lian, Z., Ovsjanikov, M., Patanè, G., Spagnuolo, M., Toldo, R.: SHREC 2010: robust large-scale shape retrieval benchmark. In: Proc. Workshop on 3D Object Retrieval (3DOR’10). Eurographics Association, Geneve (2010)
24.Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Topology-invariant similarity of nonrigid shapes. Int. J. Comput. Vis. 81(3), 281–301 (2009)
25.Bustos, B., Keim, D., Saupe, D., Schreck, T.: Content-based 3D object retrieval. IEEE Comput. Graph. Appl. 27(4), 22–27 (2007)
26.Bustos, B., Keim, D.A., Saupe, D., Schreck, T., Vranic, D.V.: Feature-based similarity search in 3D object databases. ACM Comput. Surv. 37(4), 345–387 (2005)
27.Bustos, B., Keim, D.A., Saupe, D., Schreck, T., Vranic, D.V.: An experimental effectiveness comparison of methods for 3D similarity search. Int. J. Digit. Libr. 6(1), 39–54 (2006)
28.Campbell, R.J., Flynn, P.J.: A survey of free-form object representation and recognition techniques. Comput. Vis. Image Underst. 81(2), 166–210 (2001)
29.Chaouch, M., Verroust-Blondet, A.: 3D model retrieval based on depth line descriptor. In: Proc. IEEE Int. Conf. Multimedia and Expo, pp. 599–602. IEEE Press, New York (2007)
30.Chen, D.Y., Tian, X.P., Shen, Y.T., Ouhyoung, M.: On visual similarity based 3D model retrieval. Comput. Graph. Forum 22(3), 223–232 (2003)
31.Chen, H., Bhanu, B.: Human ear recognition in 3D. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 718–737 (2007)
32.Chen, H., Bhanu, B.: Efficient recognition of highly similar 3D objects in range images. IEEE Trans. Pattern Anal. Mach. Intell. 31(1), 172–179 (2009)
33.Chua, C.S., Jarvis, R.: Point signatures: a new representation for 3D object recognition. Int. J. Comput. Vis. 25(1), 63–85 (1997)
34.Chuang, M., Luo, L., Brown, B.J., Rusinkiewicz, S., Kazhdan, M.M.: Estimating the Laplace-Beltrami operator by restricting 3D functions. Comput. Graph. Forum 28(5), 1475– 1484 (2009)
35.Cyr, C.M., Kimia, B.B.: A similarity-based aspect-graph approach to 3D object recognition. Int. J. Comput. Vis. 57(1), 5–22 (2004)
36.Daras, P., Zarpalas, D., Tzovaras, D., Strintzis, M.G.: Shape matching using the 3D radon transform. In: Proc. Int. Symposium on 3D Data Proces., Vis. and Transm., pp. 953–960. IEEE Computer Society, Los Alamitos (2004)
37.de Alarcón, P.A., Pascual-Montano, A.D., Carazo, J.M.: Spin images and neural networks for efficient content-based retrieval in 3D object databases. In: Lew, M.S., Sebe, N., Eakins, J.P. (eds.) Proc. ACM Int. Conf. on Image and Video Retrieval (CIVR). Lecture Notes in Computer Science, vol. 2383, pp. 225–234. Springer, Berlin (2002)
7 3D Shape Matching for Retrieval and Recognition |
305 |
38.Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, New York (2000)
39.Dutagaci, H., Sankur, B., Yemez, Y.: Transform-based methods for indexing and retrieval of 3D objects. In: Proc. Int. Conf. 3D Digital Imaging and Modeling, pp. 188–195. IEEE Computer Society, Los Alamitos (2005)
40.Faloutsos, C., Lin, K.: Fastmap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets. In: Proc. ACM Int. Conf. on Management of Data (SIGMOD), pp. 163–174 (1995)
41.Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Pajdla, T., Matas, J. (eds.) Proc. Eur. Conf. Comput. Vis. (ECCV). Lecture Notes in Computer Science, vol. 3023, pp. 224–237. Springer, Berlin (2004)
42.Funkhouser, T.A., Kazhdan, M.M., Min, P., Shilane, P.: Shape-based retrieval and analysis of 3D models. Commun. ACM 48(6), 58–64 (2005)
43.Funkhouser, T.A., Shilane, P.: Partial matching of 3D shapes with priority-driven search. In: Sheffer, A., Polthier, K. (eds.) Proc. Symposium on Geom. Process. ACM International Conference Proceeding Series, vol. 256, pp. 131–142. Eurographics Association, Geneve (2006)
44.Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Graph. 25(1), 130–150 (2006)
45.Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proc. Int. Conf. and Exhib. on Comput. Graph. and Interact. Tech. (SIGGRAPH), pp. 209–216 (1997)
46.Ghaderpanah, M., Abbas, A., Hamza, A.B.: Entropic hashing of 3D objects using LaplaceBeltrami operator. In: Proc. Int. Conf. Image Process. (ICIP), pp. 3104–3107. IEEE, New York (2008)
47.Giorgi, D., Attene, M., Patanè, G., Marini, S., Pizzi, C., Biasotti, S., Spagnuolo, M., Falcidieno, B., Corvi, M., Usai, L., Roncarolo, L., Garibotto, G.: A critical assessment of 2D and 3D face recognition algorithms. In: Tubaro, S., Dugelay, J.L. (eds.) Proc. Int. Conf. on Advanc. Video and Signal Based Surveill. (AVSS), pp. 79–84. IEEE Computer Society, Los Alamitos (2009)
48.Giorgi, D., Frosini, P., Spagnuolo, M., Falcidieno, B.: Multilevel relevance feedback for 3D shape retrieval. In: Spagnuolo, M., Pratikakis, I., Veltkamp, R.C., Theoharis, T. (eds.) Proc. Workshop on 3D Object Retr. (3DOR), pp. 45–52. Eurographics Association, Geneve (2009)
49.Goodall, S., Lewis, P.H., Martinez, K., Sinclair, P.A.S., Giorgini, F., Addis, M., Boniface, M.J., Lahanier, C., Stevenson, J.: Sculpteur: Multimedia retrieval for museums. In: Proc. ACM Int. Conf. on Image and Video Retrieval (CIVR). Lecture Notes in Computer Science, vol. 3115, pp. 638–646. Springer, Berlin (2004)
50.Hetzel, G., Leibe, B., Levi, P., Schiele, B.: 3D object recognition from range images using local feature histograms. In: Proc. IEEE Conf. Comput. Vision and Pattern Recognit. (CVPR), pp. 394–399. IEEE Computer Society, Los Alamitos (2001)
51.Hilaga, M., Shinagawa, Y., Komura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3d shapes. In: Proc. Int. Conf. and Exhib. on Comput. Graph. and Interact. Tech. (SIGGRAPH), pp. 203–212 (2001)
52.Hu, J., Hua, J.: Salient spectral geometric features for shape matching and retrieval. Vis. Comput. 25(5–7), 667–675 (2009)
53.Huang, P., Hilton, A., Starck, J.: Shape similarity for 3D video sequences of people. Int. J. Comput. Vis. 89(2–3), 362–381 (2010)
54.Huang, Q.X., Flöry, S., Gelfand, N., Hofer, M., Pottmann, H.: Reassembling fractured objects by geometric matching. ACM Trans. Graph. 25(3), 569 (2006)
55.Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y., Ramani, K.: Three-dimensional shape searching: state-of-the-art review and future trends. Comput. Aided Des. 37(5), 509–530 (2005)
56.Johnson, A., Spin-images: a representation for 3D surface matching. Ph.D. thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (1997)
306 |
B. Bustos and I. Sipiran |
57.Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999)
58.Kanezaki, A., Harada, T., Kuniyoshi, Y.: Partial matching for real textured 3D objects using color cubic higher-order local auto-correlation features. In: Spagnuolo, M., Pratikakis, I., Veltkamp, R.C., Theoharis, T. (eds.) Proc. Workshop on 3D Object Retr. (3DOR), pp. 9–12. Eurographics Association, Geneve (2009)
59.Kang, S.B., Ikeuchi, K.: The complex egi: a new representation for 3D pose determination. IEEE Trans. Pattern Anal. Mach. Intell. 15(1), 707–721 (1993)
60.Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors (2003)
61.Keim, D.A.: Efficient geometry-based similarity search of 3D spatial databases. In: Delis, A., Faloutsos, C., Ghandeharizadeh, S. (eds.) Proc. ACM Int. Conf. on Management of Data (SIGMOD), pp. 419–430. ACM Press, New York (1999)
62.Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. In: Proc. Natl. Acad. Sci. USA, pp. 8431–8435 (1998)
63.Laga, H., Nakajima, M.: A boosting approach to content-based 3D model retrieval. In: Rohl, A. (ed.) Proc. Int. Conf. and Exhib. on Comput. Graph. and Interact. Tech. in Australasia (SIGGRAPH), pp. 227–234. ACM, New York (2007)
64.Laga, H., Nakajima, M.: Supervised learning of similarity measures for content-based 3D model retrieval. In: Tokunaga, T., Ortega, A. (eds.) Proc. Int. Conf. Large-Scale Knowledge Resources. Lecture Notes in Computer Science, vol. 4938, pp. 210–225. Springer, Berlin (2008)
65.Laga, H., Nakajima, M., Chihara, K.: Discriminative spherical wavelet features for contentbased 3D model retrieval. Int. J. Shape Model. 13(1), 51–72 (2007)
66.Laga, H., Takahashi, H., Nakajima, M.: Spherical parameterization and geometry imagebased 3D shape similarity estimation. Vis. Comput. 22(5), 324–331 (2006)
67.Laga, H., Takahashi, H., Nakajima, M.: Spherical wavelet descriptors for content-based 3D model retrieval. In: Proc. Shape Modeling Int, p. 15. IEEE Computer Society, Los Alamitos (2006)
68.Lazaridis, M., Daras, P.: A neurofuzzy approach to active learning based annotation propagation for 3D object databases. In: Perantonis, S.J., Sapidis, N., Spagnuolo, M., Thalmann, D. (eds.) Proc. Workshop on 3D Object Retr. (3DOR), pp. 49–56. Eurographics Association, Geneve (2008)
69.Lee, T.K., Drew, M.S.: 3D object recognition by eigen-scale-space of contours. In: Sgallari, F., Murli, A., Paragios, N. (eds.) Proc. Int. Conf. on Scale Space and Var. Methods in Comput. Vision. Lecture Notes in Computer Science, vol. 4485, pp. 883–894. Springer, Berlin (2007)
70.Leng, B., Qin, Z.: A powerful relevance feedback mechanism for content-based 3D model retrieval. Multimed. Tools Appl. 40(1), 135–150 (2008)
71.Lévy, B.: Laplace-Beltrami eigenfunctions towards an algorithm that understands geometry. In: Proc. Shape Modeling Int, p. 13. IEEE Computer Society, Los Alamitos (2006)
72.Li, X., Guskov, I.: 3d object recognition from range images using pyramid matching. In: Proc. Int. Conf. Comput. Vision (ICCV), pp. 1–6. IEEE Press, New York (2007)
73.Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans, J., Kawamura, S., Kurita, Y., Lavoue, G., Nguyen, H., Ohbuchi, R., Ohishi, Y., Porikli, F., Reuter, M., Sipiran, I., Smeets, D., Suetens, P., Tabia, H., Vandermeulen, D.: SHREC’11 track: shape retrieval on non-rigid 3d watertight meshes. In: Proc. Workshop on 3D Object Retrieval (3DOR’11). Eurographics Association, Geneve (2011). doi:10.2312/3DOR/3DOR11/079-088
74.Lian, Z., Godil, A., Fabry, T., Furuya, T., Hermans, J., Ohbuchi, R., Shu, C., Smeets, D., Suetens, P., Vandermeulen, D., Wuhrer, S.: SHREC’10 track: non-rigid 3D shape retrieval. In: Proc. Workshop on 3D Object Retrieval (3DOR’10), pp. 1–8. Eurographics Association, Geneve (2010)
75.Liu, Y., Zha, H., Qin, H.: The generalized shape distributions for shape matching and analysis. In: Proc. Shape Modeling Int., p. 16. IEEE Computer Society, Los Alamitos (2006)
7 3D Shape Matching for Retrieval and Recognition |
307 |
76.Liu, Y., Zha, H., Qin, H.: Shape topics: A compact representation and new algorithms for 3D partial shape retrieval. In: Proc. IEEE Conf. Comput. Vision and Pattern Recognit. (CVPR), pp. 2025–2032. IEEE Computer Society, Los Alamitos (2006)
77.Meyer, M., Desbrun, M., Schroder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. Vis. Math. III, 35–57 (2003)
78.Novotni, M., Degener, P., Klein, R.: Correspondence generation and matching of 3D shape subparts. Tech. Rep., University of Bonn (2005)
79.Novotni, M., Klein, R.: A geometric approach to 3D object comparison. In: Proc. Shape Modeling Int., pp. 167–175. IEEE Computer Society, Los Alamitos (2001)
80.Ohbuchi, R., Kobayashi, J.: Unsupervised learning from a corpus for shape-based 3D model retrieval. In: Wang, J.Z., Boujemaa, N., Chen, Y. (eds.) Proc. ACM Int. Conf. Multimedia Infor. Retr., pp. 163–172. ACM, New York (2006)
81.Ohbuchi, R., Yamamoto, A., Kobayashi, J.: Learning semantic categories for 3D model retrieval. In: Wang, J.Z., Boujemaa, N., Bimbo, A.D., Li, J. (eds.) Proc. ACM Int. Conf. Multimedia Infor. Retr., pp. 31–40. ACM, New York (2007)
82.Osada, R., Funkhouser, T.A., Chazelle, B., Dobkin, D.P.: Shape distributions. ACM Trans. Graph. 21(4), 807–832 (2002)
83.Ovsjanikov, M., Bronstein, A.M., Guibas, L.J., Bronstein, M.M.: Shape Google: a computer vision approach to invariant shape retrieval. In: Proc. Workshop on Non-Rigid Shape Anal. and Deform. Image Alignment (NORDIA) (2009)
84.Papadakis, P., Pratikakis, I., Perantonis, S.J., Theoharis, T.: Efficient 3D shape matching and retrieval using a concrete radialized spherical projection representation. Pattern Recognit. 40(9), 2437–2452 (2007)
85.Papadakis, P., Pratikakis, I., Theoharis, T., Passalis, G., Perantonis, S.J.: 3D object retrieval using an efficient and compact hybrid shape descriptor. In: Perantonis, S.J., Sapidis, N., Spagnuolo, M., Thalmann, D. (eds.) Proc. Workshop on 3D Object Retr. (3DOR), pp. 9–16. Eurographics Association, Geneve (2008)
86.Paquet, E., Rioux, M.: Nefertiti: A query by content software for three-dimensional models databases management. In: Proc. Int. Conf. 3D Digital Imaging and Modeling, pp. 345–352. IEEE Computer Society, Los Alamitos (1997)
87.Paquet, E., Viktor, H.: Exploring protein architecture using 3D shape-based signatures. In: Proc. Int. Conf. Eng. in Med. and Biol., pp. 1204–1208 (2007)
88.Paquet, E., Viktor, H.L.: Capri/mr: exploring protein databases from a structural and physicochemical point of view. Proc. VLDB 1(2), 1504–1507 (2008)
89.Perakis, P., Theoharis, T., Passalis, G., Kakadiaris, I.A.: Automatic 3D facial region retrieval from multi-pose facial datasets. In: Spagnuolo, M., Pratikakis, I., Veltkamp, R.C., Theoharis, T. (eds.) Proc. Workshop on 3D Object Retr. (3DOR), pp. 37–44. Eurographics Association, Geneve (2009)
90.Reuter, M., Biasotti, S., Giorgi, D., Patanè, G., Spagnuolo, M.: Discrete Laplace-Beltrami operators for shape analysis and segmentation. Comput. Graph. 33(3), 381–390 (2009)
91.Ricard, J., Coeurjolly, D., Baskurt, A.: Generalizations of angular radial transform for 2D and 3D shape retrieval. Pattern Recognit. Lett. 26(14), 2174–2186 (2005)
92.Ronneberger, O., Burkhardt, H., Schultz, E.: General-purpose object recognition in 3D volume data sets using gray-scale invariants—classification of airborne pollen-grains recorded with a confocal laser scanning microscope. In: Int. Conf. Pattern Recognit., vol. 2 (2002)
93.Ruggeri, M.R., Saupe, D.: Isometry-invariant matching of point set surfaces. In: Perantonis, S.J., Sapidis, N., Spagnuolo, M., Thalmann, D. (eds.) Proc. Workshop on 3D Object Retr. (3DOR), pp. 17–24. Eurographics Association, Geneve (2008)
94.Ruiz-Correa, S., Shapiro, L.G., Melia, M.: A new signature-based method for efficient 3D object recognition. In: Proc. IEEE Conf. Comput. Vision and Pattern Recognit. (CVPR), vol. 1 (2001)
95.Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Belyaev, A.G., Garland, M. (eds.) Proc. Symposium on Geom. Process. ACM In-
308 |
B. Bustos and I. Sipiran |
ternational Conference Proceeding Series, vol. 257, pp. 225–233. Eurographics Association, Geneve (2007)
96.Shilane, P., Min, P., Kazhdan, M.M., Funkhouser, T.A.: The Princeton shape benchmark. In: Proc. Shape Modeling Int., pp. 167–178. IEEE Computer Society, Los Alamitos (2004)
97.Sun, J., Ovsjanikov, M., Guibas, L.J.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28(5) (2009)
98.Sun, Y., Paik, J.K., Koschan, A., Page, D.L., Abidi, M.A.: Point fingerprint: a new 3D object representation scheme. IEEE Trans. Syst. Man Cybern. 33(4), 712–717 (2003)
99.Sundar, H., Silver, D., Gagvani, N., Dickinson, S.: Skeleton based shape matching and retrieval. In: Proc. Shape Modeling Int., p. 130. IEEE Computer Society, Washington (2003)
100.Tangelder, J.W.H., Veltkamp, R.C.: A survey of content based 3D shape retrieval methods. Multimed. Tools Appl. 39(3), 441–471 (2008)
101.Taniguchi, M., Tezuka, M., Ohbuchi, R.: Learning 3D face models for shape based retrieval. In: Proc. Shape Modeling Int., pp. 269–270. IEEE Press, New York (2008)
102.Tierny, J., Vandeborre, J.P., Daoudi, M.: Partial 3D shape retrieval by reeb pattern unfolding. Comput. Graph. Forum 28(1), 41–55 (2009)
103.Toldo, R., Castellani, U., Fusiello, A.: Visual vocabulary signature for 3D object retrieval and partial matching. In: Spagnuolo, M., Pratikakis, I., Veltkamp, R.C., Theoharis, T. (eds.) Proc. Workshop on 3D Object Retr. (3DOR), pp. 21–28. Eurographics Association, Geneve (2009)
104.Tung, T., Schmitt, F.: The augmented multiresolution reeb graph approach for content-based retrieval of 3D shapes. Int. J. Shape Model. 11(1), 91–120 (2005)
105.Vanamali, T., Godil, A., Dutagaci, H., Furuya, T., Lian, Z., Ohbuchi, R.: SHREC’10 track: generic 3D warehouse. In: Proc. Workshop on 3D Object Retrieval (3DOR’10). Eurographics Association, Geneve (2010)
106.Vranic, D.: 3D model retrieval. Ph.D. thesis, University of Leipzig (2004)
107.Wessel, R., Blümel, I., Klein, R.: A 3D shape benchmark for retrieval and automatic classification of architectural data. In: Spagnuolo, M., Pratikakis, I., Veltkamp, R.C., Theoharis, T. (eds.) Proc. Workshop on 3D Object Retr. (3DOR), pp. 53–56. Eurographics Association, Geneve (2009)
108.Wolfson, H.J., Rigoutsos, I.: Geometric hashing: an overview. Comput. Sci. Eng. 4, 10–21 (1997)
109.Wu, H.Y., Wang, L., Luo, T., Zha, H.: 3D shape consistent correspondence by using LaplaceBeltrami spectral embeddings. In: Spencer, S.N., Nakajima, M., Wu, E., Miyata, K., Thalmann, D., Huang, Z. (eds.) Proc. ACM Int. Conf. on Virtual Real. Contin. and Its Appls. in Ind., pp. 307–309. ACM, New York (2009)
110.Xu, G.: Convergent discrete Laplace-Beltrami operators over triangular surfaces. In: Proc. Geom. Modeling and Process., pp. 195–204. IEEE Computer Society, Los Alamitos (2004)
111.Xu, G.: Discrete Laplace-Beltrami operators and their convergence. Comput. Aided Geom. Des. 21, 767–784 (2004)
112.Yeh, J.S., Chen, D.Y., Chen, B.Y., Ouhyoung, M.: A web-based three-dimensional protein retrieval system by matching visual similarity. Bioinformatics 21(13), 3056–3057 (2005)
113.You, C.F., Tsai, Y.L.: 3D solid model retrieval for engineering reuse based on local feature correspondence. Int. J. Adv. Manuf. Technol. 46(5–8), 649–661 (2009)
114.Zarpalas, D., Daras, P., Axenopoulos, A., Tzovaras, D., Strintzis, M.G.: 3D model search and retrieval using the spherical trace transform. EURASIP J. Appl. Signal Process. 2007(1), 207 (2007)
115.Zhang, D.: Harmonic shape images: A 3D free-form surface representation and its applications in surface matching. Ph.D. thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (1999)
116.Zhou, X., Seibert, H., Busch, C., Funk, W.: A 3D face recognition algorithm using histogrambased features. In: Perantonis, S.J., Sapidis, N., Spagnuolo, M., Thalmann, D. (eds.) Proc. Workshop on 3D Object Retr. (3DOR), pp. 65–71. Eurographics Association, Geneve (2008)
Part III
3D Imaging Applications
In this final part of this book, we discuss four applications areas of 3D imaging and analysis, in each of four chapters. The first of these is 3D face recognition and the second is 3D Digital Elevation Model generation. The third concerns how such 3D remote sensing technology can be applied to the measurement of forests. A final chapter discusses 3D medical imaging. This is a little different from the other applications in the sense that internal structures are imaged and many data representations employed are volume-based (voxelized) rather than surface mesh based.