Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Конспект лекций

.pdf
Скачиваний:
120
Добавлен:
18.06.2021
Размер:
2.52 Mб
Скачать

3)

Эфферентные волокна иннервируют

3)

Эфферентные волокна иннервируют

 

скелетные мыщцы.

 

 

все органы без исключения.

4)

Выход волокон строго сегментарен,

4)

Выход волокон из 4 участков:

 

начиная

с

передних

бугров

мезенцефального, бульбарного, торако-

 

четверохолмия и до конца СМ.

люмбального, сакрального.

5)

Диаметр волокон 12-14 мкм.

 

5)

Диаметр волокон 6 – 7 мкм.

6)

Скорость

 

распространения

6)

Скорость

распространения

 

возбуждения до 120 м/сек.

 

 

возбуждения до 20 м/сек.

7)

Медиатор – ацетилхолин (АЦХ).

7)

Медиаторы: АЦХ, НА, серотонин,

 

 

 

 

 

 

АТФ, аминокислоты.

Основные функции автономной (вегетативной) нервной системы.

1. Поддержание постоянства внутренней среды организма:

- прямое влияние вегетативных волокон на различные ткани; - опосредованное влияние вегетативных волокон через эндокринные органы.

2. Обеспечение приспособительных реакций в условиях повышенной функциональной активности, в том числе при стрессе.

Элементы ВНС работают по принципу функционального антагонизма. Часть элементов (преимущественно парасимпатический отдел) обеспечивает поддержание гомеостаза, другая часть (преимущественно симпатический отдел) обеспечивает выведение гомеостатических параметров на иной уровень, за пределы функциональной нормы с тем, чтобы обеспечить поддержание работы того или иного органа. Понятие функционального антагонизма относительно. Функциональный антагонизм влияния симпатического и парасимпатического отделов наблюдается только на конечном уровне регуляции, т. е. на уровне клеток, получающих симпатические и парасимпатические сигналы. На уровне целого организма наблюдается синергизм (совместное, сочетанное действие). Тем более что, ряд органов и тканей снабжаются только либо симпатическими (многие кровеносные сосуды, селезенка, мозговой слой надпочечника), либо парасимпатическими волокнами (афференты некоторых органов чувств), а многие внутренние органы имеют метасимпатическую иннервацию, обеспечивающую регуляцию, вынесенную на периферию.

После денервации органов повышается чувствительность к медиаторам АНС. Так, после ваготомии орган обладает повышенной чувствительностью к ацетилхолину, а после симпатэктомии – к норадреналину. В основе – возрастание числа рецепторов ПСМ, снижение содержания ферментов, расщепляющих медиатор. Действие основных классических медиаторов может быть воспроизведено с помощью фармпрепаратов. Различные фармсредства, оказывающие на эффекторный орган действие, аналогичное действию постганглионарного волокна получили названия миметиков (адреномиметики, холиномиметики). Вещества, избирательно блокирующие рецепторы ПСМ, - ганглиоблокаторы.

2.9.1. Метасимпатическая часть АНС.

Представляет базовую (местную) иннервацию; клетки и волокна ее лежат в стенках внутренних органов (сердце, ЖКТ, мочевой пузырь) и только их иннервируют.

Отличительные признаки метасимпатической нервной системы:

1.Иннервирует только внутренние органы с собственной моторной активностью.

2.Получает синаптические входы от симпатического и парасимпатического отделов вегетативной нервной системы; в то же время не имеет синаптических контактов с эфферентной частью соматической рефлекторной дуги.

3.Не находится в антагонистических отношениях с другими частями ВНС.

4.Обладает большей независимостью от ЦНС, чем симпатический и парасимпатический отделы.

71

5.Имеет собственный медиатор – АТФ.

Взависимости от локализации различают следующие участки метасимпатической нервной системы:

1.Кардиометасимпатический участок;

2.Энтерометасимпатический участок;

3.Уретрометасимпатический участок;

4.Везикулометасимпатический участок;

5.В матке, в области ее шейки, тоже имеется метасимпатическая система.

Функции.

1.Передает центральные влияния к исполнительным структурам.

2.Имеет самостоятельные интегративные образования тонкой регуляции и координации работы висцеральных органов, включающие местные рефлекторные дуги, способные функционировать при полной децентрализации.

3.Обеспечивает расслабление гладкомышечных клеток.

4.Выполняет роль ингибиторных влияний холинергической системы в ЖКТ.

Для многих висцеральных органов характерна пуринергическая передача. Здесь при стимуляции пресинаптических терминалей выделяются пуриновые продукты распада

аденозин и инозин, а медиатором является АТФ. Место локализации медиатора – пресинаптические терминалы эффекторных нейронов метасимпатической части АНС. Выделившийся в синаптическую щель медиатор взаимодействует с пуринорецеторами ПСМ. Пуринорецепторы двух типов: первого типа – более чувствительны к аденозину, второго – к АТФ. Действие медиатора преимущественно направлено на релаксацию гладкой мускулатуры. Пуринергические нейроны выступают главной антагонистической тормозной системой по отношению к возбуждающей холинергической системе в механизмах кишечной пропульсии, участвуют в механизме рецептивной релаксии желудка, расслабления пищеводного и анального сфинктеров.

2.9.2. Парасимпатический отдел АНС.

Преганглионарные нейроны расположены в стволе мозга и боковых рогах сакрального (крестцового) отдела спинного мозга; преганглионарные волокна идут до вегетативных интрамуральных ганглиев.

Особенности парасимпатического отдела.

1.Вегетативные ганглии максимально удалены от ЦНС. Располагаются либо вблизи эффекторных органов, либо интрамурально (в стенке рабочих органов: кишки, сердца и т. д.).

2.Преганглионарные волокна длинные, а постганглионарные короткие.

3.Реакции возбуждения вегетативного ганглия узко локализованы каким-то одним органом или частью органа, поскольку постганглионарные волокна уже находятся в толще органа или начинаются вблизи органа.

4.Окончания постганглионарных волокон выделяют ацетилхолин. Он является универсальным медиатором для симпатического и парасимпатического отделов на уровне вегетативных ганглиев. Окончания преганглионарных волокон (и симпатические и парасимпатические) вырабатывают только ацетилхолин.

5.Реакции возбуждения наиболее ярко проявляются при состояниях функционального покоя организма (во время сна). Таким образом, можно полагать, что механизмы парасимпатической регуляции предназначены для обеспечения гомеостаза – стабилизации внутренней среды организма.

Парасимпатическая система оказывает трофотропное действие, т.е. способствует восстановлению нарушенного во время активности организма гомеостаза.

Трофотропные вегетативные функции.

1.Торможение деятельности.

2.Активность внутренних органов направлена на поддержание гомеостаза.

72

3.Проявляются в покое.

4.Усиление анаболических процессов (ассимиляция), накопление энергетических

запасов.

При возбуждении парасимпатического отдела:

1.Торможение сердечной деятельности (уменьшение частоты и силы сердечных сокращений);

2.Снижение системного артериального давления;

3.Увеличение секреции инсулина (снижение содержания глюкозы в крови);

4.Усиление моторной и секреторной функции ЖКТ;

5.Сокращение гладкомышечных клеток стенки мочевого пузыря.

Холинергическая передача. Имеется 2 типа холинорецепторов (ХР):

1.М–ХР (мускариновые – токсин мухомора мускарин оказывает на них эффект, подобный ацетилхолину; выключаются атропином и скополамином). Окончания такого типа были найдены среди всех окончаний постганглионарных нейронов парасимпатического отдела. В клетках большинства висцеральных органов образовались М-ХР. Это специфические белки, которые вступают в избирательную связь с молекулой АЦХ. На основе образования этой связи в клеточной мембране изменяется ионная проницаемость. Меняется МП клеток и изменяется рабочая функция клеток (сократительная, собирательная и т. д.).

2.Н-ХР (никотиновые; избирательно выключаются амониевыми соединениями). Н-ХР найдены в вегетативных ганглиях. АЦХ выделяют окончания преганглионарных нейронов не только парасимпатического отдела, но и симпатического. Н-ХР найдены и в соматической нервной системе (в мионевральном синапсе, в ЦНС).

2.9.3. Симпатический отдел АНС.

Центральные нейроны (преганглионарные) расположены в торакальном (грудном) отделе спинного мозга. Их отростки – преганглионарные волокна – идут до соответствующих вегетативных паравертебральных и превертебральных ганглиев, где заканчиваются синапсами на постганглионарных нейронах. Эти нейроны дают аксоны, которые идут непосредственно к органу - объекту управления (постганглионарные волокна).

Особенности симпатического отдела.

1.Вегетативные ганглии находятся вблизи спинного мозга, образуя паравертебральный симпатический ствол. Исключение: брыжеечный и ганглий солнечного сплетения.

2.Преганглионарные волокна короткие, за исключением брыжеечного и солнечного сплетения, а постганглионарные волокна длинные.

3.Реакции возбуждения, как правило, генерализованы, так как от одного ганглия постганглионарноые волокна направляются не к одному, а сразу к целому комплексу органов. Например, ганглий солнечного сплетения обеспечивает вегетативную иннервацию: печени, желудка, селезенки, поджелудочной железы, кишечника.

4.Окончания постганглионарных волокон выделяют, как правило, медиатор норадреналин, за исключением потовых желез, в которых медиатор – ацетилхолин.

5.Реакции возбуждения симпатического отдела наиболее ярко проявляются при стрессовых ситуациях. Эти регуляторные реакции обеспечивают поддержание

функций при экстремальных воздействиях на организм.

Симпатическая система, как правило, вызывает мобилизацию деятельности жизненно важных органов, повышает энергообразование в организме – за счет активации процессов гликогенолиза, глюконеогенеза, липолиза оказывает эрготропное влияние.

Эрготропные вегетативные функции.

1.Активация деятельности.

2.Повышение реактивности (готовность к действию – при стрессе).

3.Способствуют приспособлению организма к меняющимся условиям внешней среды.

73

4. Усиление катаболических процессов (диссимиляция). При возбуждении симпатического отдела:

1.Усиление работы сердца и увеличение частоты сердечных сокращений;

2.Увеличивается системное артериальной давление;

3.Нарастает содержание глюкозы в крови;

4.Расширяются бронхи;

5.Расширяются зрачки;

6.Увеличивается секреция мозгового слоя надпочечников (в крови возрастает содержание адреналина);

7.Тормозится деятельность ЖКТ;

8.Расслабляется стенка мочевого пузыря.

Адренергическая передача. Обнаружена на уровне постганглионарных нервных окончаний симпатического отдела, кроме потовых желез. Механизмы отличаются большой вариабельностью и разнообразием эффектов. НА даже на одном объекте (особенно если это ГМК в сосудистой стенке) способен вызвать двухфазную реакцию клетки: в начале – активацию функций, затем – ослабление.

Существует 2 типа клеточных адренорецепторов (АР):

1) Альфа–АРы: 1 и 2 ; 2) Бета–АРы: 1 и 2.

Регуляторное действие НА может зависеть от количественного состава, соотношения альфа– и бетаАР, представленных в клетке. Если альфа-АР больше, то конечный результат регуляции будет приводить к активации рабочей функции. Если бетаАР больше, то - к ослаблению функции. Кроме количественного соотношения рецепторов на конечную функцию клетки может влиять и динамика связывания медиатора с альфа– и бетаАР. Альфа–АР локализованы на клеточной мембране, бета–АР – внутриклеточно.

Альфа-АР.

1. 1 –АР:

Активация гликогенфосфорилазы; сокращение ГМК сосудов, селезенки, матки, семявыносящего протока; расслабление кишечника; усиление и учащение сокращений сердца.

2. 2–АР:

Активация этих рецепторов приводит к ингибированию аденилатциклазы. В нервных окончаниях они обеспечивают угнетение высвобождение медиатора (пресинаптическое торможение). Это можно наблюдать и на парасимпатических терминалях, и на преганглионарных волокнах. Эти рецепторы есть и на ГМК сосудов, в жировых клетках, на тромбоцитах (т.е. на не иннервированных клетках).

Бета-АР.

Пресинаптические -АР регулируют высвобождение нейромедиатора. Их возбуждение приводят к увеличению высвобождения медиатора (положительная обратная связь).

Постсинаптические: 1-АР (иннервируемые), 2-АР (гормональные). Обнаружены практически на всех клетках. Тесно сопряжены с ферментом аденилатциклазой, которая стимулирует образование цАМФ (второй посредник).

Эффекты активации постсинаптических бета-адренорецепторов.

1-АР:

-в сердце (учащение, усиление работы);

-ГМК коронарных артерий (расслабление);

-кишечник (расслабление);

-в жировой ткани (липолиз);

-в слюнных железах (усиление секреции слюны, содержащей амилазу).

2-АР:

-на ГМК кровеносных сосудов (их активация приводит к расширению большинства артерий и снижению системного артериального давления);

-в трахее и бронхах (расширение);

74

-в скелетных мышцах (усиление гликогенолиза);

-в матке и мочевом пузыре (расслабление);

-в поджелудочной железе (высвобождение инсулина).

2.9.4. Трансдукторы.

В АНС существуют специальные клетки - трансдукторы, соответствующие постганглионарным структурам и выполняющие их функцию. Передача возбуждения к ним осуществляется химическим способом, а отвечают они эндокринным способом. Их аксоны не формируют синаптических контактов, а свободно заканчиваются вокруг сосудов (образуют гемальные органы). К трансдукторам относят: 1) хромаффинные клетки мозгового слоя надпочечников, которые на холинергический передатчик прегаглионарного симпатического окончания отвечают выделением адреналина и норадреналина; 2) юкстагломерулярные клетки почки, которые отвечают на адренергический передатчик постганглионарного симпатического волокна выделением в кровяное русло ренина; 3) нейроны гипоталамических супраоптических и паравентрикулярных ядер, реагирующих на синаптический приток разной природы выделением вазопрессина и окситоцина; 4) нейроны ядер гипоталамуса.

2.9.5. Автономные (вегетативные) рефлексы.

Переключение висцеральных афферентных сигналов на эфферентные клетки может происходить в периферических образованиях АНС: пара-, превертебральных и интрамуральных ганглиях (низшие рефлекторные центры), а также на спинальном уровне. В спинальных структурах может идти согласование афферентных сигналов из различных рецептивных зон. В определенных условиях, интеграция висцеральных и соматических сигналов не ограничивается сегментарным спинномозговым уровнем и осуществляется уровнями более высоких порядков. Их координация осуществляется в центрах, расположенных в ретикулярной формации ствола мозга, мозжечке, гипоталамусе, лимбических образованиях и в КБП.

Висцеро-висцеральные рефлексы – возбуждение возникает и заканчивается во внутренних органах. Рефлекторные дуги разного уровня. Одни замыкаются в интрамуральных ганглиях и обеспечиваются МНС, другие – в пара- и превертебральных симпатических узлах, третьи – имеют спинальный и более высокий уровень замыкания.

Рефлекс Гольца: раздражение интерорецепторов брюшной полости вызывает замедление ЧСС.

Раздражение рецепторов пищеварительного тракта сопровождается ослаблением тонуса мышц, суживающих зрачок.

Раздражение каротидной или аортальной рефлексогенных зон влечет изменение интенсивности дыхания, уровня кровяного давления, ЧСС.

Висцеросоматические рефлексы также возникают при раздражении внутренних органов, но в дополнение к висцеральным вызывают и соматические реакции. (изменение текущей активности, сокращение и расслабление селетных мышц) Пр., торможение общей двигательной активности при раздражении синокаротидной зоны, сокращение мышц брюшной стенки или подергивание конечности при раздражении рецепторов пищеварительного тракта.

Висцеросенсорные рефлексы – необходимо продолжительное и сильное воздействие. В дополнение к реакциям во внутренних органах и соматической мышечной системе, изменяется соматическая чувствительность. Мехенизм: висцеральные и кожные чувствительные волокна конвергируют на одних и тех же нейронах спинно-таламического пути, в промежуточных структурах происходит потеря специфичности информации, в результате ядерные структуры ЦНС и КБП связывают возникающее возбуждение с раздражением определенной области кожной поверхности. Висцеродермальный рефлекс –

75

раздражение внутренних органов сопровождается изменением потоотделения, электропроводимости кожи, изменением кожной чувствительности.

Вследствие сегментарной организации автономной и соматической иннервации на ограниченных участках поверхности тела, топография которых различна в зависимости от того, какой орган раздражается, при заболеваниях внутренних органов возникает повышение тактильной и болевой чувствительности определенных областей кожи. Эти боли названы отраженными, а области их проявления – зонами Захарьина-Геда.

Соматовисцеральные рефлексы. Разновидность – дермовисцеральный рефлекс. При раздражении некоторых областей поверхности тела возникают сосудистые реакции и изменения функций определенных висцеральных органов (основание для рефлексотерапии).

2.9.6. Тонус АНС.

Эппингер и Гесс в 1910 г. разделили людей на 2 категории – симпатикотоников и ваготоников. Признаки ваготонии: редкий пульс, глубокое замедленное дыхание, сниженная величина АД, сужение глазной щели и зрачков, наклонность к гиперсаливации и к метеоризму (Сейчас – 50 признаков ваготонии и симпатикотонии). Даниелопуло ввел понятие «амфотония», когда оба отдела АНС имеют повышенный тонус. Четвериков ввел понятие «локальный тонус» - повышение тонуса симпатической или парасимпатической системы в конкретном органе, например, в сердце.

В настоящее время выделяют 8 типов вегетативной реактивности: 1) нормальная реакция (нормотония), 2) общая симпатикотония, 3) частичная симпатикотония, 4) общая ваготония, 5) частичная ваготония, 6) смешанная реакция, 7) общая интенсивная реакция, 8) общая слабая реакция.

Нарушение тонуса АНС наблюдается при многих заболеваниях, сопровождающихся нарушением функционирования внутренних органов. Восстановление их функций часто бывает связано с восстановлением нормального изменения тонуса АНС в процессе их функционирования.

76

3. ФИЗИОЛОГИЯ СЕНСОРНЫХ СИСТЕМ

3.1. Общая сенсорная физиология; 3.2. Зрение; 3.3. Слух; 3.4. Вестибулярная система; 3.5. Обоняние; 3.6. Вкус; 3.7. Соматосенсорная чувствительность; 3.8. Висцеральная чувствительность.

3.1. ОБЩАЯ СЕНСОРНАЯ ФИЗИОЛОГИЯ

Сенсорной системой (по Павлову – анализатором) называют часть нервной системы, состоящую из воспринимающих элементов – сенсорных рецепторов, получающих стимулы из внешней или внутренней среды, нервных путей, передающих информацию от рецепторов в мозг, и тех частей мозга, которые перерабатывают эту информацию.

Анализатор имеет: периферический отдел (совокупность рецепторов); проводниковый отдел (афферентные нейроны и проводниковые пути); центральный отдел (участок коры больших полушарий).

Переработка сенсорной информации может сопровождаться, но может и не сопровождаться осознанием стимула. Если осознание происходит, то говорят об ощущении. Понимание ощущения приводит к восприятию.

Общая сенсорная физиология – это общие принципы, лежащие в основе работы сенсорных систем и их результата – субъективного восприятия. Эти 2 аспекта обусловили разные стратегические подходы к исследованию сенсорных функций.

В случае анализа физических и химических параметров работы сенсорных систем говорят о методах объективной сенсорной физиологии.

Когда для описания сенсорных функций используются результаты, полученные психологическими методами исследования субъективного восприятия человека, говорят о субъективной сенсорной физиологии.

Параметры объективной сенсорной физиологии: явления в окружающей среде, сенсорные стимулы, возбуждение сенсорных нервов, интеграционные процессы в сенсорных системах.

Параметры субъективной сенсорной физиологии: сенсорные впечатления, ощущения; восприятие. С помощью этих параметров осуществляется переход от физиологических процессов к психическим процессам.

Общие принципы строения сенсорных систем:

1) многослойность, т.е. наличие нескольких слоев нервных клеток, 1-й из которых связан с рецепторами, а последний – с нейронами моторных областей КБП. Это дает возможность специализировать нейронные слои на переработке разных видов сенсорной информации (позволяет организму быстро реагировать на простые сигналы, анализируемые уже на первых уровнях), а также избирательно регулировать свойства нейронных слоев влиянием из других отделов мозга.

2)многоканальность, т.е. наличие в каждом слое множества нервных клеток, связанных с множеством клеток следующего слоя. Параллельные каналы передачи и обработки информации обеспечивают точность, детальность анализа сигналов и большую надежность.

3)«сенсорные воронки» – разное число элементов в соседних слоях. «Суживающаяся воронка» - уменьшение элементов последующего слоя, а «расширяющаяся воронка» – увеличение. Физиологический смысл 1-й – в уменьшении избыточности информации, а 2-й – в обеспечении дробного и сложного анализа разных признаков сигнала.

4)дифференциация по вертикали и горизонтали.

По вертикали – образование отделов, состоящих из нескольких нейронных слоев и осуществляющих определенную функцию.

По горизонтали – различные свойства рецепторов, нейронов и связей между ними в пределах каждого из слоев.

77

Основные функции сенсорной системы (или операции с сигналами):

1)ОБНАРУЖЕНИЕ СИГНАЛОВ;

2)РАЗЛИЧЕНИЕ;

3)ПЕРЕДАЧА И ПРЕОБРАЗОВАНИЕ;

4)КОДИРОВАНИЕ;

5)ДЕТЕКТИРОВАНИЕ ПРИЗНАКОВ;

6)ОПОЗНАВАНИЕ ОБРАЗОВ.

Обнаружение сигналов начинается в рецепторе. Рецептор является преобразователем внешних стимулов в информационную систему кодируемых нервных импульсов (смотрите тему Возбудимые ткани, п. 1.9 – рецепторный и генераторный потенциалы).

Различение сигналов - способность замечать различия в свойствах одновременно или последовательно действующих раздражителей. Характеризует то минимальное различие между стимулами, которое сенсорная система может заметить (дифференциальный, или разностный, порог). Различение начинается в рецепторах, но в нем участвуют нейроны всей сенсорной системы.

Различение силы раздражителей.

Закон Вебера: порог различия интенсивности раздражителя практически всегда выше ранее действовавшего раздражения на определенную долю. Так, усиление давления на кожу руки ощущается, если увеличить груз на 3 %. К 100 Г добавить 3 Г, к 200 Г - 6 Г, к 600 Г - 18 Г. Эта зависимость силы раздражения от ощущения выражается формулой:

d I / I = const,

где I - сила раздражения, dI – ощущаемый прирост (порог различия), const –постоянная величина. Аналогичные соотношения характерны для зрения, слуха, и других органов чувств человека.

Однако спонтанная активность сенсорной системы существенно влияет на абсолютный порог особенно при весьма малых и очень сильных воздействиях. Соответственно, справедливость закона ВЕБЕРА имеет ограничения. ФЕХНЕР обнаружил, что интенсивность ощущения растет не линейно (как у ВЕБЕРА), а логарифмически: Е = а log I + b, где Е – величина ощущения, I – сила раздражения, а и b

–константы. Эта формула описывает ПСИХОФИЗИЧЕСКИЙ ЗАКОН ФЕХНЕРА более известный как ЗАКОН ВЕБЕРА-ФЕХНЕРА - ощущение раздражения увеличивается пропорционально логарифму раздражения.

Пространственное различение.

Основано на распределении возбуждения в слое рецепторов и в нейронных слоях. Если 2 раздражителя возбудили 2 соседних рецептора, то различение этих раздражителей невозможно, они будут восприняты как единое целое. Необходимо, чтобы между двумя возбужденными рецепторами находился хотя бы 1 невозбужденный рецептор.

Временное различение раздражений.

Необходимо, чтобы вызванные ими нервные процессы не сливались во времени и чтобы сигнал, вызванный вторым стимулом, не попадал в рефрактерный период от предыдущего раздражения.

Передача и преобразование сигналов.

Эти процессы доносят до высших центров мозга наиболее важную информацию о раздражителе в форме, обеспечивающей надежный и быстрый анализ.

Преобразования сигналов могут быть пространственные и временные. Пространственные преобразования - изменения соотношения разных частей

сигнала. Так, в зрительной области коры расширено представительство центральной ямки сетчатки (информационно более важной) при относительном сжатии проекции периферии поля зрения («циклопический глаз»). В соматосенсорной области коры преимущественно представлены наиболее значимые для тонкого различения и организации поведения зоны - кожа пальцев рук и лица («сенсорный гомункулюс»).

78

Временные преобразования информации.

Сжатие, временная компрессия сигналов: переход от длительной (тонической) импульсации нейронов на нижних уровнях к коротким (фазическим) разрядам нейронов высоких уровней.

Ограничение избыточности информации и выделение существенных признаков сигналов.

Избыточность сенсорных сообщений ограничивается путем подавления информации о менее существенных сигналах. Менее важно во внешней среде то, что неизменно, либо изменяется медленно во времени и в пространстве.

Кодирование - преобразование информации в условную форму – код. В сенсорных системах сигналы кодируются наличием или отсутствием электрического импульса в тот или иной момент времени. Такой способ прост и устойчив к помехам.

Информация о раздражении и о его параметрах передается в виде отдельных импульсов, а также групп или «пачек» импульсов («залпов» импульсов). Амплитуда, длительность и форма каждого импульса одинаковы. Число импульсов в пачке, частота их следования, длительность пачек и интервалов между ними, «временной рисунок пачки», различны и зависят от характеристик стимула.

Информация кодируется также числом одновременно возбужденных нейронов, местом возбуждения в нейронном слое.

Особенности кодирования в сенсорных системах.

В отличие от телефонных или телевизионных систем нет декодирования. Множественность и перекрытие кодов. Для одного и того же сигнала используется

несколько кодов: частотой и числом импульсов в пачке, числом возбужденных нейронов и их локализацией в слое.

ВКБП используется позиционное кодирование. Определенный признак раздражителя вызывает возбуждение определенного нейрона или небольшой группы нейронов, расположенных в определенном месте нейронного слоя.

Для периферических отделов сенсорной системы типично временное кодирование признаков раздражителя, а на высших уровнях – переход к преимущественно пространственному (позиционному) кодированию.

Детектирование - избирательное выделение сенсорным нейроном того или иного признака раздражителя. Такой анализ осуществляют нейроны-детекторы, избирательно реагирующие на определенные параметры стимула. Напр., ответ нейрона зрительной области коры на определенную ориентацию темной или светлой полоски, расположенной

вопределенной части поля зрения.

Ввысших отделах сенсорных систем сконцентрированы детекторы сложных признаков и целых образов (детекторы лица в нижневисочной области коры обезьян).

Опознание образов - конечная и наиболее сложная операция сенсорной системы. Синтезируя сигналы от нейронов-детекторов, высший отдел сенсорной системы формирует «образ» раздражителя и сравнивает его с множеством образов, хранящихся в памяти. Опознание завершается принятием решения о том, с каким объектом или с какой ситуацией встретился организм. В результате этого происходит восприятие, т.е. осознание, чье лицо мы видим, кого слышим, какой запах чувствуем.

Опознание происходит независимо от изменчивости сигнала. Т.е. сенсорная система формирует независимый от изменений ряда признаков сигнала (инвариантный) сенсорный образ.

Адаптация сенсорной системы - общее свойство сенсорных систем, заключающееся в приспособлении к длительно действующему (фоновому) раздражителю. Проявляется в снижении абсолютной и повышении дифференциальной чувствительности сенсорной системы (исключение составляет вестибуло- и проприорецепторы).

По скорости адаптации все рецепторы делятся на быстро- и медленноадаптирующиеся. Первые после развития адаптации практически не посылают в мозг

79

информации о длящемся раздражении. Вторые передают информацию в значительно ослабленном виде.

Если действие раздражителя прекращается, то чувствительность рецептора повышается (восстанавливается).

Важную роль играет эфферентная регуляция свойств сенсорной системы, за счет нисходящих влияний более высоких отделов на более низкие. Происходит как бы перенастройка свойств нейронов на оптимальное восприятие внешних сигналов в изменившихся условиях. Эфферентные влияния чаще имеют тормозной характер, приводят к уменьшению чувствительности и ограничению потока афферентных сигналов.

Взаимодействие сенсорных систем осуществляется на спинальном,

ретикулярном, таламическом и корковом уровнях. Особенно широка интеграция сигналов в ретикулярной формации. В КБМ происходит интеграция сигналов высшего порядка.

Межсенсорное взаимодействие на корковом уровне создает условия для формирования «схемы (карты) мира» и непрерывной увязки, координации с ней собственной «схемы тела» организма.

Теория информации в сенсорной физиологии.

Между нервной системой и искусственными системами связи существует функциональное сходство в передаче информации.

В теории информации сам этот термин применяется к измеримой, описываемой математически стороне сообщения. Т.е. теория информации дает возможность измерить количество информации в неком сообщении и охарактеризовать системы ее передачи. Информация – это выраженное количественно уменьшение неопределенности в знаниях о событии. Поэтому информационное содержание (I) удобно выражать как величину, обратную вероятности этого события: I=1/p. В простейшем случае информацию можно передавать с помощью 2 символов (0, 1) в двоичной системе. Измеримое информационное содержание сообщения: I=ld(1/p), ld – двоичный логарифм. Количество информации, передаваемое одним двоичным символом, называется 1 бит.

Количественная оценка информации используется в экспериментальной психофизике, когда речь идет об уровне СОЗНАТЕЛЬНОГО ВОСПРИЯТИЯ.

Психофизическая пропускная способность – максимальный поток информации на уровне сознательного восприятия. Пропускная способность (бит/с):

Суммарная

Психофизического канала

-для глаза –

107

40

-для уха –

105

30

-для кожи –

106

5

-вкуса –

103

1

-запаха –

105

1

Т.е., то, что мы воспринимаем в любой момент времени - лишь малая доля

приходящего на наши сенсорные

органы

потока информации об окружающем мире

(максимально около 30%). Для эффективной защиты от шума используется параллельная передача информации по двум или более каналам (принцип избыточности). Например, когда испытуемого просили оценить интенсивность давления на кожу, информационное содержание механического воздействия на механорецепторы кожи кисти верхней конечности составило – 3 бит/сек. Эта величина почти совпадает с полученными данными для одиночного рецептора давления, хотя в процессе возбуждения участвовали около 20 афферентных волокон, отходящих от медленно адаптирующихся рецепторов.

3.2. ЗРЕНИЕ

Зрение – многозвенный процесс, начинающийся с проекции изображения на сетчатку глаза. Затем происходит возбуждение фоторецепторов, передача и преобразовавние зрительной информации в нейронных слоях зрительной системы, а

80