Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Конспект лекций

.pdf
Скачиваний:
120
Добавлен:
18.06.2021
Размер:
2.52 Mб
Скачать

Секреция пролактина регулируется выработкой в гипоталамусе пролактолиберина и пролактостатина.

Меланоцитстимулирующий гормон (МСГ) вырабатывается в средней доле гипофиза у животных. Под его влиянием из тирозина в присутствии тирозиназы образуется меланин. Это вещество под влиянием солнечного света переходит из дисперсионного состояния в агрегатное, что даёт эффект загара.

Липотропины (β- и γ-) – это полипептиды, способные оказывать жиромобилизующий эффект (активируют липолиз). Обладают эффектом, подобным МСГ. Ещё они интересны тем, что из них под влиянием специфических пептидов образуются эндорфины и энкефалины (морфиноподобные пептиды).

Гормоны нейрогипофиза. Антидиуретический гормон (АДГ).

Действие АДГ сводится к 2-м основным эффектам:

1.Стимулируется реабсорбция воды в дистальных канальцах почек. В результате увеличивается объем циркулирующей крови, повышается АД, снижается диурез и возрастает относительная плотность мочи. В результате усиленного обратного всасывания воды снижается осмотическое давление межклеточной жидкости. Под действием АДГ происходит активация фермента аденилатциклазы, локализующегося на поверхности базолетеральной (обращенной к интерстицию) мембраны клеток эпителия почечных канальцев. Активация аденилатциклазы приводит к накоплению в цитоплазме этих клеток цАМФ. Последний диффунцирует в область апикальной мембраны (обращенной в просвет почечного канальца ) и стимулирует образование в цитоплазме белковых везикул, которые затем включаются в структуру апикальной мембраны и образуют в ней каналы, высокопроницаемые для воды. В результате вода из просвета почечных канальцев поступают в цитоплазму клеток эпителия, перемещается к базолатеральной мембране, и, проникая через нее, попадает в интерстициальную ткань. После разрушения АДГ белковые везикулы элиминируются из структуры апикальной мембраны, и мембрана становится не проницаемой для воды.

2. В больших дозах АДГ вызывает сужение артериол, что приводит к увеличению АД. Развитию гипертензии способствует также повышение под влиянием АДГ чувствительности сосудистой стенки к констрикторному действию катехоламинов.

Поскольку эффект вазоконстрикции возникает только при действии больших доз АДГ, в физиологических условиях значимость его вазоконстрикторного влияния невелика. С другой стороны, развитие вазоконстрикции может иметь адаптивное значение при острой кровопотере, сильных болевых воздействиях.

Основная часть АДГ (5/6) синтезируется в супраоптическом ядре гипоталамуса, меньшая часть – в паравентрикулярном ядре. Секреция АДГ усиливается при повышении осмотического давления крови (после введения гипертонического раствора в сосуды, питающие гипоталамус, осморецепторы раздражаются и вызывают повышенную секрецию АДГ из нейрогипофиза в кровь).

Также важным стимулом является снижение объема циркулирующей крови. При снижении на 15 – 20 % образование АДГ увеличивается в несколько десятков раз. Но, в этом случае, интенсивность секреции меняется в зависимости от информации, поступающей в гипоталамус, от волюморецепторов правого предсердия и от барорецепторов аортальной и синокартидной зон.

Недостаточная секреция АДГ приводит к развитию несахарного мочеизнурения. Основные проявления: сильная жажда (полидипсия), потеря большого количества жидкости с выделяемой мочой (полиурия), учащенные мочеиспускания (поллакиурия). Больной за сутки выделяет 10 – 20 л. низкой относительной плотности. Симптомы проходят при введении синтетического вазопрессина или препаратов, приготовленных из задней доли гипофиза животных.

Окситоцин.

121

Эффекты этого гормона реализуются в двух направлениях:

1.Сокращение гладкой мускулатуры матки. Окситоцин является, гормоном, обеспечивающим нормальное протекание родового акта. При удалении гипофиза у животных родовые схватки становятся длительными и малоэффективными.

2.Принимает участие в регуляции процессов лактации. Усиливает сокращение миоэпителиальных клеток в молочных железах и тем самым способстввует выделению

молока.

Содержание окситоцина в крови возрастает в конце беременности, в послеродовом периоде. Кроме того, его продукция стимулируется рефлекторно при раздражении соска в процессе грудного выкармливания.

Надпочечники.

В надпочечниках выделяют корковое и мозговое вещество. Корковое вещество включает клубочковую, пучковую и сетчатую зоны.

 

Корковое вещество

 

Мозговое вещество

 

 

 

 

Клубочковая зона

Пучковая зона

Сетчатая зона

 

 

 

 

Катехоламины

Минералокортикоиды

Глюкокортикоиды

Половые гормоны

 

(альдостерон)

(кортизол, кортизон,

(андрогены,

(адреналин,

норадреналин)

 

кортикостерон)

эстрогены)

 

 

 

 

 

 

В клубочковой зоне происходит синтез минералокортикоидов (альдостерон). В пучковой синтезируются глюкокортикоиды. В сетчатой зоне вырабатывается наибольшее количество половых гормонов.

Альдостерон.

Усиливает в дистальных канальцах почек реабсорбцию ионов Na+, одновременно увеличивает выведение с мочой ионов K+. Аналогичные усиления натрий – калиевого обмена происходит в потовых и слюнных железах, а также в кишечнике. Это приводит к изменению электролитного состава плазмы крови (гипернатриемия и гипокалиемия). Под его влиянием возрастает печеночная реабсорбция воды, которая всасывается пассивно по осмотическому градиенту, создаваемыми ионами Na+. Это приводит к существенным изменениям гемодинамики – увеличивается объем циркулирующей крови, возрастает АД.

Вследствие усиленного обратного всасывания воды уменьшается диурез.

При повышенной секреции альдостерона увеличивается склонность к отекам, что обуславливается задержкой в организме Na+ и воды, повышением гидростатического давления крови в капиллярах и в связи с этим – усиленной экссудацией жидкости из просвета сосудов в ткани. За счет усиления процессов экссудации и отечности тканей альдостерон способствует развитию воспалительной реакции и является провоспалительным гормоном.

Под влиянием альдостерона увеличивается также секреция ионов Н+ в канальциевом аппарате почек, что приводит к снижению их концентрации во внеклеточной жидкости и изменению кислотно-основного состояния (алкалоз).

Снижение секреции альдостерона вызывает усиленное выведение натрия и воды с мочой, что приводит к дегидратации тканей, снижению объема циркулирующей крови и уровня АД. В результате в организме возникают явления циркуляторного шока. Концентрация калия в крови при этом, наоборот, увеличивается, что является причиной развития сердечных аритмий.

122

Основным фактором, регулирующим секрецию альдостерона, является функционирование ренин-ангиотезин-альдостероновой системы. При снижении уровня АД наблюдается возбуждение симпатического отдела АНС, что приводит к сужению почечных сосудов. Уменьшение почечного кровотока способствует усиленной выработке ренина в юкстагломерулярных нефронах почек. Ренин является ферментом, который действует на плазменный α2-глобулин ангиотензиноген, превращая его в ангиотензин I. Антиотензин I затем превращается в ангиотензин II, который увеличивает секрецию альдостерона. Выработка альдостерона может усиливаться также по механизму обратной связи при изменении электролитного состава плазмы крови, в частности при гипонатриемии или гиперкалиемии.

В незначительной степени секреция альдостерона стимулируется кортикотропином.

Глюкокортикоиды.

Кортизол, кортизон, кортикостерон.

Эффекты:

1.Влияют на все виды обмена веществ.

А) Белковый обмен – стимулируются процессы распада белка. В основе – угнетение транспорта аминокислот из плазмы крови в клетки что вызывает торможение последующих стадий белкового синтеза. Катаболизм белка приводит к снижению мышечной массы, остеопорозу; уменьшается скорость заживления ран. Распад белка приводит к уменьшению содержание белковых компонентов в защитном мукоидном слое, покрывающем слизистую оболочку пищеварительного тракта. Последнее способствует увеличению агрессивного действия соляной кислоты и пепсина (образование язв).

Б) Жировой обмен – глюкокортикоиды усиливают мобилизацию жира из жировых депо и увеличивают концентрацию жирных кислот в плазме крови. Вместе с тем увеличивается отложение жира в области лица, груди,и на боковых поверхностях туловища.

В) Углеводный обмен – введение глюкокортикоидов приводит к увеличению содержанию глюкозы в плазме крови (гипергликемия). В основе – стимуляция процессов глюконеогенеза. Избыток аминокислот, образовавшихся в результате катаболизма белков, используется для синтеза глюкозы печени.

Глюкортикоиды ингибируют активность гексокиназы, что препятствует утилизации глюкозы тканями. Поскольку основным источником энергии при избытке глюкокортикоидов являются жирные кислоты, определённое количество глюкозы сберегается от энергетических трат, что также способствует гипергликемии.

Гипергликемический эффект является одним из компонентов защитного действия глюкокортикоидов при стрессе, поскольку в виде глюкозы в организме создается запас энергетического субстрата, расщепление которого помогает преодолеть действия экстремальных стимулов.

Таким образом, по характеру влияния на углеводный обмен, глюкокортикоиды – антагонисты инсулина.

При длительном приеме этих гормонов или при их повышенной выработке в организме может развиться стероидный диабет.

2. Противовоспалительные действия.

Угнетают все стадии воспалительной реакции (альтерацию, экссудацию, пролиферацию), стабилизируют мембраны лизосом, что предотвращает выброс протеолитических ферментов, способствующих развитию воспалительной реакции. Нормализуют повышенную проницаемость сосудов и, тем самым, уменьшают процессы экссудации и отечность тканей, а также выделение медиаторов воспалительной реакции.

Угнетают процессы фагоцитоза в очаге воспаления.

Уменьшают выраженность лихорадочной реакции, сопутствующей воспалительному процессу, за счет снижения выброса интерлейкина-1 из лейкоцитов, что снижает его стимулирующий эффект на центр теплопродукции в гипоталамусе.

123

3. Противоаллергические действия.

Эффекты, лежащие в основе противовоспалительного действия, определяют и ингибирующее действие глюкокортикоидов на развитие аллергической реакции (стабилизация лизосом, угнетение образования факторов, усиливающих аллергическую реакцию, снижение экссудации и другие). Гиперпродукция глюкокортикоидов приводит к снижению числа эозинофилов в крови, увеличенное число которых – «маркер аллергии».

4.Подавление иммунитета.

Глюкокортикоиды угнетают как клеточный, так и гуморальный иммунитет, что связано со снижением образования антител и процессов фагоцитоза.

Длительный прием глюкокортикоидов приводит и к инволюции тимуса и лимфоидной ткани, являющихся иммунокомпентентными органами, вследствие чего уменьшается количество лимфоцитов в крови.

Это является серьезным побочным эффектом длительного приема (возрастает вероятность присоединение вторичной инфекции). С другой стороны, этот эффект может использоваться для подавления роста опухолей, происходящих из лимфоидной ткани, или для торможения реакций отторжения при трансплантации органов и тканей.

5. Участие в формировании необходимого уровня АД.

Глюкокортикоиды повышают чувствительность сосудистой стенки к действию катехоламинов, что приводит к гипертензии. Повышению АД способствует также выраженная в небольшой степени минералкортикоидное действие глюкокортикоидов (задержка в организме натрия и воды, сопровождается увеличением объема циркулирующей крови).

Гипертензивный эффект – один из компонентов противошокового действия (шок всегда сопровождается резким падением АД).

Противошоковая активность связана с гипергликемией. Вызывающая глюкокортикоидная гипергликемия может расцениваться как важный фактор адекватного энергетического обеспечения мозга, что противодействует шоку.

Ворганизме существует определенный суточный ритм выработки глюкокортикоидов, основная масса – 6-8 ч. утра.

Продукция глюкокортикоидов регулируются кортикотропином, усиливается при действии стрессовых стимулов.

Половые гормоны.

Синтез и секрецию андрогенов надпочечников стимулируют АКТГ и пролактин.

Враннем антенатальном периоде (12 – 20 недель) андрогены надпочечников обеспечивают вместе с семенниками развитие наружных гениталий по мужскому типу, обусловливают опускание яичек в мошонку, стимулируют рост семявыносящих протоков, семенных канальцев, связок.

Впрепубертатном периоде андрогены надпочечников участвуют в запуске полового созревания.

У взрослого мужчины в надпочечниках образуется только 5% всех андрогенов, небольшое количество которых идёт на образование эстрогенов. У женщин в фолликулярную фазу более половины, а после овуляции менее половины от общего количества андрогенов.

Преобразования надпочечниковых андрогенов в тестостерон, прогестерон и эстрогены происходит в основном в периферических тканях-мишенях: подкожной жировой клетчатке, волосяных фолликулах, молочных железах, в плаценте во время беременности.

При избыточном образовании половых гормонов в сетчатой зоне развивается адреногенитальный синдром 2-х типов: гетеросексуальный и изосексуальный.

Гетеросексуальный – развивается при выработке гормонов противоположного пола

исопровождается появлением вторичных половых признаков, присущих другому полу.

124

Изосексуальный – при избыточной выработке гормонов одноименного пола, проявляется ускорением процессов полового развития.

Катехоламины.

Катехоламины – адреналин, норадреналин, дофамин. Источником служит тирозин. Синтез катехоламинов происходит в аксонах нервных клеток, запасание – в синаптических пузырьках. Однако, катехоламины, образующиеся в мозговом веществе надпочечников, выделяются в кровь, а не в синаптическую щель, т.е. являются типичными гормонами. В мозговом веществе содержатся хромаффинные клетки, в которых синтезируются адреналин и норадреналин (80% секреции – адреналин).

Синтез катехоламинов в мозговом веществе надпочеников стимулируется нервными импульсами, поступающими по чревному симпатическому нерву. Благодаря существованию нервно-рефлекторных связей надпочечники отвечают усилением синтеза и выделения катехоламинов в ответ на болевые и эмоциональные раздражения, гипоксию, мышечную нагрузку, охлаждение и т.д.

В свою очередь, выделение этих гормонов в кровь, приводит к развитию эффектов, аналогичных действию стимуляции симпатических нервов.

Существуют и гуморальные пути регуляции: увеличение синтеза и выделения под действием инсулина, глюкокортикоидов, при гипогликемии.

Наиболее важные эффекты катехоламинов: стимуляция деятельности сердца, вазоконстрикция, торможение перистальтики и секреции кишечника; расширение зрачка; уменьшение потоотделения; усиление производительности катаболизма и образовании энергии.

Адреналин имеет большее сродство к β-адренорецепторам, локализованным в миокарде, вследствие чего вызывает положительные инотропный и хронотропный эффекты в сердце.

Норадреналин – имеет большее сродство к сосудистым α-адренорецепторам, его действием обеспечивается вазоконстрикция и увеличение периферического сосудистого сопротивления.

Определенное количество норадреналина может диффундировать в межклеточное пространство, а затем и в кровь из синапсов. Из-за этого содержание норадреналина в крови может быть больше, чем адреналина, хотя мозговое вещество надпочеников секретирует преимущественно адреналин.

При стрессе содержание катехоламинов повышается в 4 – 8 раз. Период полураспада 1 – 3 минуты. Инактивируются в тканях-мишенях, печени, почках.

Щитовидная железа

Основной структурно-функциональной единицей является фолликулы – округлые полости, стенка которых образована одним рядом клеток кубического эпителия. Они заполнены колоидом и содержат гормоны – тироксин и трийодотропин, связанные с белком тиреоглобулином. В межфолликулярном пространстве проходят капилляры, обеспечивающие васкуляризацию фолликулов. В щитовидной железе объёмная скорость кровотока выше, чем в других органах и тканях. В межфолликулярном пространстве находятся также парефолликулярные клетки (с-клетки), в которых вырабатывается гормон тиреокальцитонин.

Тиреоидные гормоны. Тироксин и трийодтиронин.

Биосинтез тироксина и трийодтиронина осуществляется за счет йодирования тирозина. В щитовидной железе происходит активное поглощение йода. Содержание йода

вфолликулах в 30 раз превышает концентрацию его в крови. При гиперфункции щитовидной железы это соотношение становится еще больше. При выбросе радиоактивного йода возникает опасность его попадания в организм и концентрирования

вклетках щитовидной железы (период полураспада р. йода 8 суток). Предотвращение

125

такой опасности – предварительное насыщение щитовидной железы «обычным» нерадиоактивным йодом.

После соединения йода с тирозином, входящего в состав тиреоглобулина, образуются монойодтирозин и дийодтирозин. За счет соединения двух молекул дийодтирозина образуется тироксин; конденсация моно- и дийодтирозина приводит к образованию трийодтиронина. После протеолиза тиреоглобулина образуется 2-5 молекул тироксина и трийодтиронина. Их секреция в молярных соотношениях 4 : 1. За счет протеаз идет расщепление тиреоглобулина и высвобождения в кровь гормонов. Активность тироксина в несколько раз меньше, чем трийодтирозина, а латенный период, соответственно – больше. Содержание тироксина в крови в 20 раз больше, чем трийодтиронина. Тироксин при дейодировании может превращаться в трийодтиронин. Трийодтиронин – основной гормон, а тироксин – его предшественник.

Синтез и секреция тиреоидных гормонов находятся под контролем гипотоламогипофизарной системы. Тиреотропин активирует аденилатциклазу щитовидной железы, ускоряет активный транспорт йода, стимулирует рост эпителиальных клеток щитовидной железы. Эти клетки формируют фолликул, в полости которого происходит йодирование тирозина.

Тиреоидные гормоны могут циркулировать в крови в течение нескольких дней. Содержание: 300 – 500 мкг тироксина, 6 – 12 мкг трийодтиронина.

Втех районах, где в почве снижено содержание йода и поступающий с пищей йод составляет менее 100 мкг/сутки, часто развивается зоб – разрастание ткани щитовидной железы, т.е. ее компенсаторное увеличение «эндемический зоб». Это заболевание может протекать на фоне нормальной продукции тироксина и трийодтиронина (эутироидный зоб), на фоне гиперпродукции (токсический зоб), или в условиях их недостаточности (гипотироидный зоб). Считается, что применение в пищу йодированной соли (для получения суточной дозы йода 180-200 мкг) является достаточно надежным методом профилактики эндемического зоба.

Действие тироксина и трийодтиронина проявляется резким усилением метаболической активности организма. Ускоряются все виды обмена веществ (белковый, липидный, углеводный). Увеличивается энергообразование и повышается основной обмен. В результате активации всех видов обмена веществ изменяется деятельность практически всех органов. Усиливается теплопродукция, повышается температура тела. Ускоряется работа сердца (тахикардия, повышение АД, увеличение минутного объема крови), стимулируется деятельность пищеварительного тракта (повышение аппетита, усиление перистальтики кишечника, увеличение секреторной активности).

При гиперфункции щитовидной железы обычно снижается масса тела, наблюдается эмоциональная лабильность, возбуждение, бессонница. При гипофункции щитовидной железы наблюдается торможение нервно-психической активности (вялость, сонливость, апатия).

Вдетском возрасте эти гормоны имеют существенное значение для процессов роста, физического развития, энергетического обеспечения созревания тканей мозга.

Недостаток тиреоидных гормонов у детей приводит к задержке умственного и физического развития (кретинизм).

Кальцитонин (тиреокальцитонин) снижает уровень кальция в крови. В костной ткани усиливает активность остеобластов и процессы минерализации. В почках и кишечнике угнетает реабсорбцию кальция и стимулирует обратное всасывание фосфатов. Реализация этих эффектов приводит к гипокальциемии.

Околощитовидные железы Паратгормон (паратирин, паратиреоидный гормон) обеспечивает увеличение

уровня кальция в крови. Органами-мишенями являются кости и почки.

В костной ткани усиливает функцию остеокластов, что способствует деминерализации кости и повышению уровня кальция и фосфора в плазме крови.

126

В канальцевом аппарате почек стимулирует реабсорбцию кальция и тормозит реабсорбцию фосфатов, что приводит к гиперкальциемии и фосфатурии.

Развитие фосфатурии имеет определенное значение в реализации гиперкальцимического эффекта. Кальций образует с фосфатами нерастворимые соединения, а усиленное выведение фосфатов с мочой способствует повышению уровня свободного кальция в плазме крови.

Паратирин усиливает синтез кальцитриола, который является активным метаболитом витамина Д3. Д3 образуется в неактивном состоянии в коже под действием ультрафиолета, а затем под влиянием паратирина происходит его активация в печени и почках. Кальцитриол усиливает образование кальцийсвязывающего белка в стенке кишечника, что способствует обратному всасыванию кальция. Прямое действие паратирина на кишечную стенку незначительно.

При удалении околощитовидных желез животное погибает от тетанических судорог. Это связано с тем, что в случае низкого содержания кальция в крови резко усиливается нервно-мышечная возбудимость.

Гиперпродукция паратирина приводит к деминерализации и резорбции костной ткани, развитию остеопороза. Из-за увеличенного уровня кальция в плазме крови усиливается склонность к камнеобразованию в органах мочеполовой системы.

Гиперкальциемия способствует развитию выраженных нарушений электрической стабильности сердца, образованию язв в пищеварительном тракте, возникновение которых обусловлено стимулирующим действием ионов Са2+ на выработку гастрина и соляной кислоты в желудке.

Секреция паратирина и кальцитонина регулируется по типу отрицательной обратной связи в зависимости от уровня кальция в плазме крови. При снижении содержания Са2+ усиливается секреция паратирина и тормозится выработка кальцитонина. В физиологических условиях это наблюдается при беременности, лактации, сниженном содержании кальция в пище.

Увеличение Са2+ в плазме крови, наоборот, способствует снижению секреции паратирина и увеличению выработки кальцитонина. Последнее может иметь большое значение у детей и мышц молодого возраста, когда осуществляется формирование скелета.

Поджелудочная железа

Эндокринная активность осуществляется панкреотическими островками (островками Лангерганса), в которых есть несколько типов клеток:

1)α-клетки, в которых происходит выработка глюкогона

2)β-клетки, вырабатывают инсулин

3)δ-клетки, продуцируют соматостатин, угнетающий секрецию инсулина и глюкагона

4)G-клетки, вырабатывают гастрин

5)ПП-клетки, вырабатывают необходимое количество панкреатического полипептида, который является антагонистом холицистокинина.

β-клетки составляют большую часть островкового аппарата поджелудочной железы (60 %). Они продуцируют инсулин.

Инсулин влияет на все виды обмена веществ; прежде всего – снижает уровень глюкозы в плазме крови.

Под воздействием инсулина увеличивается проницаемость клеточной мембраны для глюкозы и аминокислот. Это приводит к усилению биоэнергетических процессов и синтеза белка.

В результате активности ферментов, тормозится образование глюкозы из аминокислот, которые могут использоваться для биосинтеза белка. Уменьшается катаболизм белка. Процессы образования белка начинают преобладать над распадом, что

127

обеспечивает анаболический эффект. Инсулин является синергистом соматотропина по своему влиянию на белковый обмен.

Влияние инсулина на жировой обмен выражается в усилении липогенеза и отложении жира в жировом депо. Поскольку возрастает утилизация глюкозы и ее использование в качестве энергетического субстрата, определенная часть жировых кислот сберегается от энергетических трат и используется в последующем для липогенеза. В жировых депо инсулин угнетает активность липазы и стимулирует образование триглициридов.

Недостаточная секреция инсулина приводит к развитию сахарного диабета. Резко увеличивает содержание глюкозы в плазме крови, возрастает осмотическое давление внеклеточной жидкости.

Дегидратация тканей, появление жажды. При определенном уровне гипергликемии тормозится ее реабсорбция в почках и возникает глюкозурия.

Так как глюкоза является осмотически активным соединением, в составе мочи возрастает так же количество воды, что приводит к увеличению диуреза (полиурия).

Усиливается липолиз с образование избыточного количества несвязанных жирных кислот; происходит образование кетоновых тел. Катаболизм белка и недостаток энергии (вследствие нарушения утилизации глюкозы) приводит к астении и снижению массы тела.

Избыточное содержание инсулина в крови вызывает гипогликемию. Это может привести к потере сознания (гипогликемическая кома). В головном мозге утилизация глюкозы не зависит от фермента гексокиназы, активность которой регулируется инсулином. Поглощение глюкозы мозговой тканью определяется в основном концентрацией глюкозы в плазме крови. Ее снижение под действием инсулина может привести к нарушению энергетического обеспечения мозга и потере сознания.

Выработка инсулина регулируется механизмом отрицательной обратной связи в зависимости от содержания глюкозы в плазме крови. Повышение содержания глюкозы способствует увеличению выработки инсулина; в условиях гипогликемии образование инсулина, наоборот, тормозится. Секреция инсулина в некоторой степени возрастает при росте содержания аминокислот в крови, возрастает также под действием некоторых гастроинтестинальных гормонов (желудочно ингибирующий пептид, холицистокинин, секретин). Продукция инсулина возрастает также при стимуляции блуждающего нерва.

α-клетки, составляющие 25% островковой ткани, вырабатывают глюкагон, действие которого приводит к гипергликемии. В основе – усиленный распад гликогена в печени и стимуляция процессов глюконеогенеза. Глюкагон способствует мобилизации жира из жировых депо. Таким образом, действие глюкагона противоположно эффектам инсулина.

Кроме глюкагона антагонистами инсулина по своему действию на углеводный обмен является: кортикотропин, соматотропин, глюкокортикоиды, адреналин, тироксин.

Половые железы Мужские половые гормоны.

В яичках не только происходит сперматогенез, но и образование андрогенов. Сперматогенез осуществляется за счет деления сперматогенных эпителиальных клеток, содержащихся в семенных канальцах.

Выработка андрогенов происходит в интерстицальных клетках – гландулоцитах (клетках Лейдига), локализующихся в интерстиции между семенными канальцами и составляющих примерно 20 % от общей массы яичек (небольшое количество вырабатывается в сетчатой зоне коркового вещества надпочечников).

Наиболее важным из андрогенов является тестостерон. Продукция этого гормона определяет адекватное развитие мужских первичных и вторичных половых признаков (маскулинизирующий эффект).

128

Под влиянием тестостерона в период полового созревания увеличиваются размеры полового члена и яичек, появляется мужской тип оволосенения, меняется тональность голоса.

Тестостерон усиливает синтез белка (анаболический эффект), что приводит к ускорению процессов роста, физического развития, увеличению мышечной массы. Влияет на процессы формирования скелета – ускоряет образование белковой матрицы кости, усиливает отложение в ней кальция. В результате увеличивается рост, толщина и прочность кости. При гиперпродукции тестостерона ускоряется обмен веществ, в крови возрастает количество эритроцитов.

Механизм действия тестостерона обусловлен его проникновением внутрь клетки и, после превращения в более активную форму, связыванием с рецепторами ядра и органел, что приводит к изменению процессов синтеза белка и нуклеиновых кислот.

Секреция тестостерона регулируется ЛГ аденогипофиза, продукция которого возрастает в период полового созревания. При увеличении содержания в крови тестостерона выработка ЛГ тормозится по механизму отрицательной обратной связи.

Уменьшение ЛГ и ФСГ происходит также при ускорении процессов сперматогенеза.

У мальчиков до 10-11 лет в яичках обычно отсутствуют активные гландулоциты, в которых вырабатываются андрогены. Однако секреция тестостерона в них происходит во время внутриутробного развития и сохраняется у ребенка в течение первых недель жизни. Это связано со стимулирующим действием хорионического гонадотропина, продуцируемого плацентой.

Недостаточная секреция мужских половых гормонов приводит к развитию евнухоидизма (задержка развития первичных и вторичных половых признаков), диспропорциональности костного скелета (длинные конечности – небольшое туловище), увеличению отложения жира на животе и бедрах. Нередко увеличение молочных желез (гинекомастия). Нервно-психические изменения, отсутствие влечения к противоположному полу, утрата психофизиологических черт мужчины.

Женские половые гормоны.

В яичниках происходит выработка эстрогенов и прогестерона. Их секреция характеризуется цикличностью, связанной с изменением продукции гипофизарных гонадотропинов в течение менструального цикла. Помимо яичников, эстрогены могут в небольшом количестве вырабатываться в сетчатой зоне коркового вещества надпочечников. Во время беременности секреция эстрогенов увеличивается за счет гормональной активности плаценты. Наиболее активный представитель этой группы – β- эстрадиол. Прогестерон – гормон желтого тела. Его продукция возрастает в конце менструального цикла.

Под влиянием эстрогенов ускоряется развитие первичных и вторичных женских половых признаков. В период полового созревания увеличиваются размеры яичников, матки, влагалища, наружных половых органов. Усиливаются процессы пролиферации и рост желез в эндометрии. Ускоряется развитие молочных желез.

Эстрогены влияют на развитие костного скелета, посредствам усиления активности остеобластов. За счет влияния на эпифизарный хрящ тормозится рост костей в длину. Увеличивается биосинтеза белка; усиливается образование жира, избыток которого откладывается в подкожной основе, определяя особенности женской фигуры. Оволосенение по женскому типу; кожа более тонкая и гладкая, хорошо васкуляризованна.

Основное назначение прогестерона – подготовка эндометрия к имплантации оплодотворения яицеклетки. Он усиливает пролиферацию и секретирующую активность клеток эндометрия, в цитоплазме накопление липид и гликогена, усиливает васкуляризацию. Усиление пролиферации происходит также в молочных железах.

Недостаточная секреция женских половых гормонов – развитие характерного симптомокомплекса: прекращение менструации, атрофия молочных желез, влагалища,

129

матки, отсутствие оволосенения по женскому типу. Окостенение зоны эпифизарного хряща, стимуляция роста кости в длину. Внешний вид – мужские черты, низкий тембр голоса.

Выработка эстрогенов и прогестерона регулируется гипофизарными гонадотропинами, продукция которых возрастает у девочек, начиная с 9-10 лет. Секреция гонадотропинов тормозится при высоком содержании в крови женских половых гормонов.

Эпифиз.

Эпифиз является нейроэндокринным трансдуктором, преобразующим закодированную нервными импульсами информацию супрахиазматического ядра гипоталамуса о фотопериодах внешней среды в ритм секреции мелатонина, уровень которого в крови и тканях обратно пропорционален освещённости. Активация синтеза и секреции мелатонина происходит в темноте (70% с 23.00 до 7.00). У женщин максимальный уровень мелатонина во время менструации, минимальный – во время овуляции.

Главные гормоны эпифиза – мелатонин, серотонин и полипептидные гормоны. Гормоны эпифиза тормозят секрецию гонадолиберина и гонадотропинов, секрецию

ТТГ и СТГ, являются антагонистом МСГ.

Мелатонин оказывает транквилизирующее влияние через мелатониновые рецепторы и ГАМК-рецепторы тормозных нейронов.

Мелатонин и серотонин являются эндогенными антиоксидантами.

Серотонин образуется из аминокислоты триптофан в энтерохромаффинных клетках ЖКТ, в клетках бронхов, в мозге, в тучных клетках, в аппендиксе и в эпифизе, в печени, почках, надпочечниках, тимусе, эндотелии сосудов, сетчатке. Физиологические эффекты серотонина: сосудосуживающее действие в месте распада тромбоцитов; стимуляция сокращения ГМ бронхов, ЖКТ; активация миометрия беременных и рожающих женщин; медиатор серотонинергической системы в ЦНС. Является предшественником мелатонина.

Тимус.

Тимус – центральный орган иммунной системы, максимально функционирует до 12 лет, после чего постепенно атрофируется. Его эпителиальные клетки образуют полипептидные гормоны, главными из которых являются тимопоэтин и тимозины.

Гормоны тимуса стимулируют дифференцировку, созревание и пролиферацию Т- лимфоцитов; ускоряют рост организма, увеличение мышечной массы (после 12 лет эта функция переходит к половым гормонам).

Глюкокортикоиды и половые гормоны оказывают тормозящее влияние на тимус и вызывают его возрастную инволюцию. Тиреоидные гормоны стимулируют функцию тимуса.

130