Добавил:
ac3402546@gmail.com Направление обучения: транспортировка нефти, газа и нефтепродуктов группа ВН (Вечерняя форма обучения) Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Динамика точки и системы / Лекция по Динамике.doc
Скачиваний:
27
Добавлен:
01.06.2021
Размер:
1.41 Mб
Скачать

Лекция 2

Краткое содержание: Свободные колебания без сопротивления. Понятие о фазовой плоскости. Свободные колебания в поле постоянной силы. Параллельное включение упругих элементов. Последовательное включение упругих элементов. Вынужденные колебания без сопротивления. Резонанс. Свободные колебания с вязким сопротивлением. Вынужденные колебания с вязким сопротивлением.

Свободные колебания без сопротивления

Существуют устройства (упругие элементы), которые создают силу пропорциональную их удлинению. , Эту силу называют восстанавливающей или центральной силой. Коэффициент пропорциональности называется жесткостью упругого элемента.

Дифференциальное уравнение движения точки с массой , закрепленной на упругом элементе, имеет вид:

Рис. 2-1

или , где

Начальные условия имеют вид: при , .

Это дифференциальное уравнение свободных колебаний материальной точки без сопротивления.

Характеристическое уравнение имеет вид:

Корни характеристического уравнения равны:

Решение имеет вид:

- амплитуда колебаний;

- круговая или циклическая частота колебаний (собственная частота). Измеряется в

- фазовый угол (или просто фаза).

- период колебаний.

- частота колебаний (1 кол./cек=1 Гц)

Рис. 2-2

Движение материальной точки – это свободные гармонические колебания с постоянной амплитудой. Амплитуда колебаний зависит от начальных условий и круговой частоты.

Понятие о фазовой плоскости

Обычное описание движения системы с одной степенью свободы в виде зависимости координаты от времени не является единственно возможным. В ряде случаев, особенно при изучении нелинейных механических колебаний, определенными достоинствами обладает представление движения на фазовой плоскости.

Состояние системы в любой фиксированный момент времени определяется парой соответствующих значений и и может быть представлено изображающей (фазовой) точкой в плоской декартовой системе координат , , если откладывать по оси абсцисс координату , а по оси ординат –скорость . Такая плоскость называется фазовой.

В процессе движения рассматриваемой системы величины и изменяются и, соответственно, меняется положение изображающей точки на фазовой плоскости. Геометрическое место изображающих точек для данного движения называется фазовой траекторией.

Для построения фазовой траектории при заданном законе движения нужно путем дифференцирования образовать выражение скорости , а затем исключить время из двух уравнений: , .

Функция и описывает фазовую траекторию данного движения.

Фазовая плоскость особенно удобна для представления колебательных процессов, когда координата и скорость не выходят за известные пределы; поэтому вся картина движения даже в течение неограниченного времени занимает ограниченную часть фазовой плоскости.

Совокупность фазовых траекторий , которая описывает все возможные движения данной системы, называется фазовой диаграммой (фазовым портретом) данной системы.

Для свободных гармонических колебаний , а . Исключая из этих выражений время получаем

.

Это уравнение эллипса. Его полуоси зависят от амплитуды и круговой частоты.

Рис. 2-3