Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сердце.docx
Скачиваний:
80
Добавлен:
24.03.2021
Размер:
422.79 Кб
Скачать

Вопрос№29.Градиент автоматии различных отделов проводящей системы.

Градиент автоматии Гаскелла

–это уменьшение способности к автоматии по мере удаления от синоатриального узла, генерирующего импульс с частотой до 60—80 в минуту.

Р асположение

В обычных условиях автоматия всех нижерасположенных уча­стков проводящей системы подавляется более частыми импульсами, поступающими из синусно-предсердного узла. В случае поражения и выхода из строя этого узла водителем ритма может стать предсердно-желудочковый узел. Импульсы при этом будут возникать с частотой 40—50 в минуту. Если окажется выключенным и этот узел, водителем ритма могут стать волокна предсердно-желудочкового пучка (пучок Гиса). Частота сердечных сокращений в этом случае не превысит 30—40 в минуту. Если выйдут из строя и эти водители ритма, то процесс возбуждения спонтанно может возник­нуть в клетках волокон Пуркинье. Ритм сердца при этом будет очень редким — примерно 20 в минуту

Вопрос№30.Сократимость миокарда

Сократимость, т. е. способность сокращаться, характерная для всех разновидностей мышечной ткани, реализуется в миокарде благодаря трем специфическим свойствам сердечной мышцы:

физиологические свойства миокарда:

1) возбудимостью;

2) проводимостью;

3) низкой лабильностью;

4) сократимостью;

5) рефрактерностью.

Рефрактерный период довольно длинный и связан с периодом действия. Сокращаться сердце может по типу одиночного мышечного сокращения (из-за длительного рефрактерного периода) и по закону «все или ничего».

Атипические мышечные волокна обладают слабовыраженными свойствами сокращения и имеют достаточно высокий уровень обменных процессов. Это связано с наличием митохондрий, выполняющих функцию, близкую к функции нервной ткани, т. е. обеспечивает генерацию и проведение нервных импульсов. Атипический миокард образует проводящую систему сердца. Физиологические свойства атипического миокарда:

1) возбудимость ниже, чем у скелетных мышц, но выше, чем у клеток сократительного миокарда, поэтому именно здесь происходит генерация нервных импульсов;

2) проводимость меньше, чем у скелетных мышц, но выше, чем у сократительного миокарда;

3) рефрактерный период довольно длинный и связан с возникновением потенциала действия и ионами кальция;

4) низкая лабильность;

5) низкая способность к сократимости;

6) автоматия

Вопрос№31.Сопряжение процессов возбуждения и сокращения в кардиомицитах. Роль потенциала действия в Са 2+ – индицированной мобилизации Са 2+

Длительность и амплитуда потенциалов действия в сердечной мышце связаны с увеличением проницаемости мембран сократительных кардиомиоцитов для ионов Са2+. Возникновение потенциалов действия в кардиомиоцитах вызывает последовательную цепь событий, завершающуюся укорочением составляющих их миофибрилл.

Входящий в клетку кальций увеличивает длительность потенциалов действия и, как следствие, продолжительность рефрактерного периода. Кальций является важнейшим фактором в регуляции силы сокращения сердечной мышцы.

Серию последовательных явлений в клетке миокарда, начинающихся с пускового механизма сокращения — потенциала действия (ТТЛ) и завершающихся укорочением миофибрилл, называют сопряжением возбуждения и сокращения (электромеханическим сопряжением).

  • Внеклеточный кальций попадает в клетку через потенциал зависимый Ca канал, далее, попавший в клетку кальций провоцирует высвобождение Ca +2 из саркоплазматической сети.

Распределение ИОНОВ К+ и Na+ в кардиомиоците к близко к распределению этих ионов в скелетной мышце. Однако в кардиомиоците при формировании ПД и в процессе сокращения существенную роль играют и ионы Са2+ Их концентрация снаружи клетки составляет около 2 ммоль/л, но внутри клетки концентрация свободных ионов Са2+ очень мала: 10-4 ммолъ/л. При сокращении концентрация свободных ионов Са2+ внутри клетки может возрастать до 103 ммоль/л, но в фазе реполяризации избыток этих ИОНОВ удаляется из клетки. Сохранение ионного балланса в кардиомиоцитах обеспечивает К+ - Na+- и Са2+-насосы, активно перекачивающие ионы Na+ и Са2+ наружу, и ионы К+ - внутрь клетки. Работу этих насосов обеспечивают ферменты К+ - Na+ -АТФаза и Са2+ -АТФаза, нахолящиеся в сарколемме миокардиальных клеток

I фаза — деполяризация, как и в аксоне, определяется резким ростом проницаемости мембраны для ионов натрия. Порог активации натриевых каналов примерно -60 мВ, а время жизни 1 - 2 мс и может доходить до 6 мс. Фаза 1 в клетках миокарда предсердий, сердечных проводящих миоцитов (волокна Пуркинье) и миокарда желудочков имеет ту же природу, что и восходящая фаза ПД нервных и скелетных мышечных волокон — она обусловлена повышением натриевой проницаемости, т. е. активацией быстрых натриевых каналов клеточной мембраны. Во время пика ПД происходит изменение знака мембранного по­тенциала (с —90 до +30 мВ).

II фаза — плато(типичные) -(250мсек) характерна медленным спадом от пикового значения (= + 30 мВ) до нуля, В этой фазе одновременно работают два типа каналов - медленные кальциевые каналы  и калиевые каналы(сначала К, потом Са).

III фаза - реполяризация - характеризуется закрытием кальциевых каналов и усилением выходящего тока К+.

III фаза(атипичные)- медленная(сппонтнанная) деполяризация

Вопрос№32.Механизм сокращения кардиомицитов

Решающее значение в сокращении кардиомиоцитов имеют сократительные белки миокарда (актин и миозин), «регуляторные» белки (тропонин, тропомиозин, кальмодулин), кальций и АТФ.

  1. В фазу диастолы актин и миозин диссоциированы. В начале деполяризации клеточной мембраны кардиомиоцита незначительное количество натрия поступает в клетку. Поступивший натрий вызывает цепь реакций, приводящих к освобождению кальция из системы эндоплазматического ретикулума и внутренней поверхности клеточной мембраны. поступает дополнительное количество кальция. Цитоплазматический кальций связывается с кальмодулином.

  2. Ca попадая в клетку связывается с тропомином-C.

  3. При этом изменяется конформация и тропомин-тропомиозиновый комплекс - сдвигается, и позволяет актину, присоединится к миозину.

  4. Далее в результате АТФазной активности (по гидролизу АТФ), миозиновые мостики получают энергию и взаимодействуют с тонкими филаментами и подталкивают их к центру саркомера.

Вопрос№33.Механизм расслабления кардиомиоцитов

Основной процесс, определяющий расслабление кардиомиоцитов, — это удаление ионов Кальция из саркоплазмы через Ca насос в мембране эндоплазматического ретикулума, в результате чего концентрация Са2+ в ней уменьшается и становится ниже 10"7 моль/л. При этом комплексы Са2+ с тропонином С распадаются, тропомиозин смещается по отношению к актиновым филаментам и закрывает их активные центры — сокращение прекращается.

Вопрос№34.Факторы влияющие на сократимость миокарда. Значение Ca и K.

Многие факторы изменяют показатели работы сердца ( сердечный выброс , ударный объем , ударную работу и т. д.) даже в условиях постоянной преднагрузки и посленагрузки . В опытах на полосках миокарда это проявляется сдвигом кривых силы-скорости , в условиях интактного сердца - сдвигом кривых Старлинга. Эти факторы действуют на так называемое инотропное состояние миокарда, часто называемое просто сократимостью; отсюда их название - инотропные факторы.

Инотропное (ионотропное) действие положительное

Под действием симпатических нервов сила сокращения предсердий и сила сокращений желудочков увеличивается ( положительный инотропный эффект ), при этом форма потенциала действия почти не изменяется.

Сократимость повышают адреностимуляторы ( изопреналин , дофамин , добутамин ), сердечные гликозиды , препараты кальция , ингибиторы фосфодиэстеразы (амринон, милринон )

Под действием n.Vagus ( парасимпатических нервов ) сила сокращений предсердий уменьшается ( отрицательный инотропный эффект ). Это обусловлено укорочением потенциала действия . Естественные отрицательные инотропные факторы: сократимость снижается в условиях гипоксии , ацидоза и ишемии миокарда . 

Препараты с отрицательным инотропным действием: прокаинамид , дизопирамид , антагонисты кальция (например, верапамил ), бета-адреноблокаторы , высокие дозы барбитуратов , этанола, средств для общей анестезии и ряд других веществ.

Вопрос№35.принципы составления физиологических растворов, состав основных физиологических растворов.

  • Гипертонический - больше 0.9% NaCl.

  • Гипотонический – меньше 0.9% NaCl.

  • Изотонический – ровно 0.9% NaCl.

В опрос№37.Скорость проведения возбуждения в проводящей системе сердца. Роль проводящей системе в хронотопографии сердца.

Ф-ции провод с-мы :

1)является внутрисердечным генератором ритма сердца, что обеспечивает автоматизмом и проводит возбуждение в сердце

2)синхронность сокращ участков миокарда желудочков

Хронотопография - измерение скорости в разных участках проводящей системе сердца.

Вопрос№38. Механизм передачи возбуждения между миокардиоцитами.

 Передача возбуждения от кардиомиоцита к кардиомиоциту осуществляется за счет специальных плотных (тесных) контактов-«нексусы». Между кардиомиоцитами имеются вставочные диски, которые механически связывают между собой миокардиоциты. Благодаря такому строению возбуждение одного участка миокарда сопровождается быстрым распространением и возбуждением другого участка, т.е. миокард в результате работает по закону «все или ничего».

Вопрос№39.Возбудисомть сердца и ее изменения на протяжении всего цикла.

Возбудимость — это способность всех клеток сердца (и автоматических, и сократительных) реагировать на эффективный импульс. Автоматические клетки (спонтанное или активное возбуждение) являются самовозбудимыми, в то время как сократительные клетки реагируют на импульс, поступающий из структуры автоматизма.

Сокращение миокарда = 0,3с по времени совпадает с длительностью общей рефрактерности и представляет собой сумму абсолют и относит рефрактерностити. Следовательно, в периоде сокращения сердце не способно реагировать на другие раздражители.

Вопрос№40. Периоды возбудимости сердца, их продолжительность и сопоставление с фазами пд кардиомиоцита

5 периодов- соответствуют фазам трансмембранного потенциала действия

  1. Период полной невозбудимости на любой импульс (абсолютный рефрактерный период (АРП))- большая часть систолы.

  2. Период локальных реакций -очень короткий промежуток времени, во время которого в клетках образуются локальные потенциалы, не способные распространяться дальше. Эффективный рефрактерный период в клетках (ЭРП) соответствует сумме АРП и периода локальных реакций (а).

  3. Период частичной возбудимости, который включает конечную часть фазы 3 ТПД. В этот период должны быть применены сверхпороговые импульсы для создания активации, он соответствует относительному рефрактерному периоду клетки

  4. Период нормальной возбудимости -клетка будет реагировать на любой импульс пороговой интенсивности. Этот лериод продолжается в течение всей диастолы.

  5. Период сверхнормальной возбудимости -начало диастолы- когда клетка реагирует на подпороговый импульс.

Вопрос№41.Экстрасистола и компенсаторная пауза, механизм происхождения.

Экстрасистолия — несвоевременная деполяризация и сокращение сердца или отдельных его камер. (В основном они носят функциональный (нейрогенный) характер, их появление провоцируют стресс, курение, алкоголь, крепкий чай и особенно кофе - естественные условия). А в неестественных условиях, это нанесение раздражения в период 3-быстрая реполяризация.

  • Синусовая экстрасистола- Если внеочередное возбуждение возниквет в синусно-предсердном узле, когда рефрактерный период закончился, но очередной автоматиче­ский импульс еще не появился, наступает раннее сокращение сердца.

  • Желудочковая экстрасистола- вызвана возбуждением, возникшим в одном из желудочков, приводит к продолжительной компенсаторной паузе желудочков при неизменном ритме работы предсердий

Компенсаторная пауза — продолжительность периода электрической диастолы после экстрасистолы.

Соседние файлы в предмете Нормальная физиология