Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

книга / 2016_Kaplan_USMLE_Step_1_Lecture_Notes_Pharmacology

.pdf
Скачиваний:
323
Добавлен:
10.03.2021
Размер:
5.9 Mб
Скачать

Chapter 4 λ Antiarrhythmic Drugs

Uses: DOC for paroxysmal supraventricular tachycardias and AV nodal arrhythmias

Administered IV: t1/2 <10 seconds

Side effects: flushing, sedation, dyspnea

Adenosine is antagonized by methylxanthines (theophylline and caffeine)

λMagnesium

Use: torsades

Drugs causing torsades include:

ºPotassium-channel blockers (class 1A and class III)

ºAntipsychotics (thioridazine)

ºTricyclic antidepressants

Chapter Summary

λThe sequences of ionic events in the action potential of cardiac cells are described.

λDepolarization (phase 0) is due to Na+ influx in fast fibers and due to Ca2+ influx in SA and AV nodal cells. Class I antiarrhythmic drugs block Na+ influx and class IV antiarrhythmics block Ca2+ influx.

λRepolarization (phase 3) in all cardiac cells is due to K+ efflux (delayed rectifier current) and this is blocked by class IA and class III antiarrhythmic drugs. Pacemaker currents (phase 4) are blocked by class II and class IV drugs.

λResponsivity, capacity of a cell for depolarization, depends on resting membrane potential; con-ductance is the rate of potential spread; refractoriness is the inability to respond to excitation.

λFigure III-4-4 depicts the M and h gates of cardiac Na+ channels. Three conformations exist—resting (ready), active (open), and inactive (refractory). Class I drugs are least active when Na+ channels are in the resting state (state-dependent actions).

λActions of class II antiarrhythmics (beta blockers) involve antagonism of

SANS-mediated increases in cAMP, especially at SA and AV nodal cells to slow phase 0 and 4 of the action potential.

λThe class I antiarrhythmic drugs block Na+ channels. Class IA drugs are state-dependent blockers of fast Na+ channels, and they increase the action potential duration (APD). Quinidine, in addition, is an M blocker and can increase the heart rate and AV conduction. Procainamide has less M block than quinidine and no alpha block. The uses and contraindications of quinidine and procainamide are provided.

λClass IB drugs are less state-dependent blockers of fast Na+ channels, and they decrease the APD. The uses for lidocaine, mexiletine, and tocainide are discussed, as are the metabolism and adverse effects of lidocaine.

λThe class IC drug flecainide blocks fast Na+ channels, especially of HisPurkinje cells, and has no effect on the APD and no ANS effects.

109

Section III λ Cardiac and Renal Pharmacology

Chapter Summary (cont’d )

λClass II antiarrhythmic drugs are beta-blockers that decrease SA and AV

nodal activity, decrease the phase 4 slope, and prevent β1 adrenoceptor activation, thereby circumventing the normal increase in cAMP. Propranolol is nonselective; acebutolol and esmolol are selective. Their antiarrhythmic use is discussed.

λClass III antiarrhythmic drugs are K+-channel blockers that increase the APD and effective refractory period (ERP), especially in Purkinje and ventricular tissues. Amiodarone and sotalol are the examples discussed.

λClass IV antiarrhythmic drugs are Ca2+-channel blockers that decrease the SA and AV nodal activity and the slope of phase 4 of the action potential in pacemakers. The uses and adverse effects of verapamil are indicated.

λAdenosine and magnesium are two unclassified antiarrhythmic drugs. Adenosine decreases SA and AV node activity and increases the AV node refractory period. Magnesium has possible use in torsades. Drugs (other than classes Ia and III antiarrhythmics) associated with torsades include thioridazine and tricyclic antidepressants.

110

Antianginal Drugs

5

Learning Objectives

Solve problems concerning the rationale for the use of nitrates, beta blockers, and carvedilol for angina

Use knowledge of calcium channel blockers

Demonstrate understanding of ranolazine

RATIONALE FOR USE

Angina pectoris is the principal syndrome of ischemic heart disease, anginal pain occurring when oxygen delivery to the heart is inadequate for myocardial requirement.

λStable/classic angina (angina of effort or exercise) is due to coronary atherosclerotic occlusion

λVasospastic or variant angina (Prinzmetal) is due to a reversible decrease in coronary blood flow

Drug Strategies in Stable and Vasospastic Angina

Drug strategies in stable and vasospastic angina involve:

oxygen requirement by TPR, CO, or both (nitrates, CCBs, and beta blockers).

oxygen delivery by vasospasm (nitrates and CCBs).

111

Section III λ Cardiac and Renal Pharmacology

Clinical Correlate

Sildenafil (Viagra)

Phosphodiesterase 5 (PDE5) is found in blood vessels supplying the corpora cavernosa. Sildenafil

inhibits PDE 5

↑ cGMP

 

 

vasodilation

↑ blood flow

 

 

 

erectile response. If used concomitantly with nitrates or other potent vasodilators, the excessive fall in blood pressure may lead to death from cardiovascular causes, including myocardial infarct.

NITRATES

Receptor (ACh, bradykinin, 5HT, etc)

+L-Arg.

Endothelial NO cell

synthase NO

 

 

NO

 

GTP

 

 

 

 

 

 

+

 

 

 

 

 

 

 

Guanylyl

+

 

 

Smooth

 

cyclase

CGMP

 

 

 

 

 

muscle

 

 

 

 

 

 

cell

Nitrosothiol??

 

 

 

 

Cysteine

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relaxation

 

 

 

 

 

 

 

Nitroglycerin R-O-N=O

Figure III-5-1. Nitrates and the Nitric Oxide Pathway

λNitrates are prodrugs of nitric oxide

λVenodilation → ↓ preload → ↓ cardiac work → ↓ oxygen requirement

λNitrates infarct size and post-MI mortality

λDrugs:

Nitroglycerin: sublingual, transdermal, and IV formulations

Isosorbide: oral, extended release for chronic use

Side effects:

ºFlushing, headache, orthostatic hypotension

ºReflex tachycardia and fluid retention

Cautions and contraindications:

ºTachyphylaxis with repeated use

ºCardiovascular toxicity with sildenafil (see Clinical Correlate, left)

112

BETA BLOCKERS AND CARVEDILOL

λUsed in angina of effort

λβ-blockers are contraindicated in vasospastic angina

λCarvedilol is clinically equivalent to isosorbide in angina of effort

CALCIUM CHANNEL BLOCKERS (CCBs)

λAll CCBs can be used.

λNifedipine is important for vasospastic angina.

λSee Antihypertensive Drugs, chapter 3 in this section.

RANOLAZINE

λIschemia causes increased sodium which prevents calcium exit through Na+/Ca++ exchanger pump

λRanolazine blocks late inward Na+ current in cardiac myocytes, thereby decreasing calcium accumulation

λResults in decreased end diastolic pressure and improvement of diastolic coronary flow

λSide effects include constipation and nausea; increased QT makes the drug contraindicated in patients with long QT syndrome or taking drugs which increase QT (see Magnesium discussion in Chapter 4, Antiarrhythmic Drugs)

Chapter 5 λ Antianginal Drugs

Clinical Correlate

Drugs that decrease mortality in patients with stable angina include aspirin, nitroglycerin, and beta blockers. Nitroglycerin is the preferred drug for acute management of both stable and vasospastic angina.

113

 

Section III λ

Cardiac and Renal Pharmacology

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RELAXATION

 

 

 

 

 

 

 

 

 

 

 

 

 

(cAMP or cGMP)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Calcium channel blockers

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Nifedipine)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gs coupled receptors (β2)

 

 

 

 

 

PDE inhibitors

 

 

 

 

 

 

 

 

 

(Theophylline, Inamrinone)

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ATP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adenyl cyclase

 

 

 

 

 

phospho-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

diesterase

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cAMP

 

 

 

AMP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Protein kinase A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Myosin light chain kinase P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(inactive)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Myosin light chain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(inactive)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Phosphatase

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Protein kinase G

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

phospho-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

diesterase

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

cGMP

 

 

 

GMP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO

 

 

 

Guanyl cyclase

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

GTP

 

 

PDE inhibitors

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(sildenafil)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gq-coupled

 

 

 

• NO-giving drugs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

receptors

 

 

 

(nitroprusside,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(M3, bradykinin,

 

 

hydralazine,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H1 receptors on

 

 

nitroglycerin)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

endothelium)

 

 

 

• Nesiritide

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONTRACTION (Ca2+)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gq coupled

 

 

 

 

Calcium

 

 

 

receptors

 

 

(α, M3 receptors

entry

 

 

 

 

 

 

 

 

 

on smooth muscle)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ca2+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ca2+ calmodulin

 

 

 

 

 

 

 

 

 

 

 

 

 

Myosin light chain kinase (active)

Myosin light chain

P

 

 

 

 

 

 

 

Myosin light chain

P

plus actin

 

Figure III-5-2. Mechanisms of Smooth Muscle Contraction and

Relaxation and Drugs Affecting Them

114

Chapter 5 λ Antianginal Drugs

Chapter Summary

λAngina is the principal syndrome caused by ischemic heart disease. The forms are classic, stable and vasospastic.

λThe drug strategies are to increase oxygen supply by decreasing vasospasm (nitrates and calcium channel antagonists [CCBs]) and to decrease cardiac oxygen requirements by decreasing peripheral vascular resistance and/or cardiac output (nitrates, CCBs, and beta blockers).

λNitrates increase NO concentrations. Increased NO activates guanylyl cyclase; this increases cGMP levels, which dephosphorylates myosin light chains, decreasing their association with actin and thereby promoting smooth muscle relaxation. These mechanisms are summarized in Figure III-5-1.

λNO-enhancing drugs used to treat angina include nitroglycerin and isosorbide.

λThe adverse effects of the nitrates are also considered.

λCCBs decrease contractility and increase vasodilation by preventing the influx of Ca2+ required for muscle contraction. The sequence of reactions involved is summarized in Figure III-5-2. The CCBs considered are the dihydropyridines (e.g., nifedipine), verapamil, and diltiazem.

λBeta blockers act directly on the heart by decreasing the heart rate, the force of contraction, and cardiac output, thereby decreasing the work performed.

115

Antihyperlipidemics 6

Learning Objectives

Solve problems concerning HMG-CoA reductase inhibitors

Demonstrate understanding of bile acid sequestrants

Use knowledge of nicotinic acid (niacin, vitamin B3)

Solve problems concerning gemfibrozil, fenofibrate (fibrates)

Explain information related to ezetimibe

Answer questions related to orlistat

λrisk of atherosclerosis is associated with hypercholesterolemia

λrisk of cardiovascular and cerebrovascular diseases

λTreatment goal is to LDL cholesterol and atheroma plaque formation

Lipoprotein Lipase

Gemfibrozil

Blood

AcCoA

GI

 

 

Niacin, Statins

VLDL

HMG CoA

Statins

Mevalonic acid

Cholesterol

Bile acids

 

 

 

 

Cholesterol

Ezetimibe

 

 

 

 

 

 

 

 

out

Cholestyramine

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Colestipol

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III-6-1. Site of Action of Statins, Niacin, and Gemfibrozil on the Synthesis of Lipids

117

Section III λ Cardiac and Renal Pharmacology

Clinical Correlate

Nonstatin drugs have not been shown to improve cardiovascular outcomes when added to statin therapy. These drugs are most often used in patients who cannot tolerate a statin.

HMG-CoA REDUCTASE INHIBITORS

λDrugs: atorvastatin, rosuvastatin, and other –statins

At their highest therapeutic doses, atorvastatin and rosuvastatin are considered “high-intensity” statins and can lower LDL-C by 50%

Lower doses of statins are classified as “low” or “moderate” intensity

λMechanisms:

HMG-CoA reductase inhibition, results in:

ºliver cholesterol

ºLDL-receptor expression

ºplasma LDL

VLDL synthesis results in: triglyceridemia

λSide effects:

Myalgia, myopathy (check creatine kinase)

Rhabdomyolysis

Hepatotoxicity (check liver function tests)

λDrug interaction:

Gemfibrozil (rhabdomyolysis)

Cytochrome P450 inhibitors enhance toxicity of statins

BILE ACID SEQUESTRANTS

λDrugs: cholestyramine and colestipol

λMechanism: complexation of bile salts in the gut, results in:

enterohepatic recirculation of bile salts

synthesis of new bile salts by the liver

liver cholesterol

LDL-receptor expression

blood LDL

λSide effects:

VLDL and triglycerides

Gastrointestinal disturbances

Malabsorption of lipid-soluble vitamins

Hyperglycemia

λDrug interactions with orally administered drugs (warfarin, thiazides, digoxin, etc.)

λContraindication: hypertriglyceridemia

NICOTINIC ACID (NIACIN, VITAMIN B3)

λMechanism: inhibition of VLDL synthesis, results in:

plasma VLDL

plasma LDL

plasma HDL

118