Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

книга / 2016_Kaplan_USMLE_Step_1_Lecture_Notes_Pharmacology

.pdf
Скачиваний:
322
Добавлен:
10.03.2021
Размер:
5.9 Mб
Скачать

Chapter 1 λ Diuretics

Chapter Summary

λDiuretics are used to treat HTN, heart failure, edema, renal dysfunction, hypercalcemia, renal stones, glaucoma, and mountain sickness. In addition to their diuretic action, the loop and thiazide diuretics also cause vasodilation.

λFigure III-1-1 illustrates the water and ion exchange occurring in the various segments of a renal tubule and the site of action of the different classes of diuretics.

λThe positive and negative effects of IV mannitol, an osmotic diuretic, are discussed.

λCarbonic anhydrase inhibitors (e.g., acetazolamide) act in the proximal tubule to decrease absorption of Na+ and bicarbonate. The mechanisms involved are summarized in Figure III-1-2. The clinical uses and adverse affects are listed.

λLoop diuretics (e.g., furosemide) inhibit the Na+/K+/2Clcotransporter on the luminal membrane of the thick ascending loop. The mechanisms causing their diuretic actions (Figure III-1-3) and their clinical uses and adverse effects are discussed.

λThe thiazides (e.g., hydrochlorothiazide) inhibit the Na+/Clcotransporter on the luminal membrane of the distal convoluted tubule. The mechanisms leading to their diuretic actions (Figure III-1-4) and their clinical uses and adverse effects are discussed.

λSpironolactone, amiloride, and triamterene are K+-sparing, weak diuretics that act at the collecting tubule and duct level. The mechanisms leading to their diuretic actions (Figure III-1-5) and their clinical uses and adverse effects are discussed.

λTable III-1-1 summarizes the mechanisms of action, the urinary electrolyte patterns, and the resultant blood pH associated with administration of the various classes of diuretics.

89

Antihypertensives 2

Learning Objectives

Differentiate between angiotensin-converting enzyme inhibitors and angiotensin-receptor blockers

Explain drug strategy for treating hypertension using calcium-channel blockers, drugs altering sympathetic activity, and direct-acting vasodilators

Answer questions about indications for use of antihypertensive drugs

Describe modifications of hypertension treatment in comorbid conditions

Apply knowledge of treatment of pulmonary hypertension

DRUG STRATEGY

λTPR

λCO

λbody fluid volume

λBP may result in homeostatic regulation:

Reflex tachycardia (sympathetic activity)

Edema (renin activity)

THIAZIDE DIURETICS (See Chapter 1)

Thiazide diuretics are commonly used in the management of hypertension.

Clinical Correlate

Current recommendations are to use thiazide diuretics, ACEIs, or long-acting

CCBs as first-line therapy. These drugs are considered equally effective.

91

Section III λ Cardiac and Renal Pharmacology

ANGIOTENSIN-CONVERTING ENZYME INHIBITORS (ACEIs)

AND ANGIOTENSIN-RECEPTOR BLOCKERS (ARBs)

 

Inhibited by aliskiren

 

 

 

 

Angiotensinogen

 

 

renin (kidney)

 

 

 

 

 

 

 

Angiotensin I

Bradykinin

(from liver)

 

 

 

 

 

 

 

 

 

 

 

Angiotensin-

 

 

 

 

 

 

 

 

Blocked by

 

 

 

 

 

converting

 

 

 

 

 

 

 

 

 

 

 

 

 

enzyme

 

 

ACE inhibitors

 

 

 

 

 

(plasma)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Angiotensin II

inactivation

AT-1 receptors

 

 

Adrenal cortex

 

Blood vessels

blocked by

 

 

 

losartan

 

 

 

 

AT-1

 

 

 

 

 

 

receptors

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aldosterone

 

Vasoconstriction

 

 

 

secretion

 

 

 

 

 

 

 

Figure III-2-1. The Angiotensin System

 

 

λDrugs:

ACEIs: captopril, lisinopril (and other “prils”)

ºBlock formation of angiotensin II

ºResulting in prevention of AT1-receptor stimulation

ºaldosterone, vasodilation

ºACEIs prevent bradykinin degradation

ARBs: losartan (and other “sartans”)

ºBlock AT1 receptors

ºSame results as ACEIs on BP mechanisms

ºARBs do not interfere with bradykinin degradation

Renin inhibitor: Aliskiren

ºBlocks formation of angiotensin I

ºSame results as ACEIs on BP mechanisms

ºAliskiren does not interfere with bradykinin degradation

λUses:

Mild-to-moderate hypertension (all)

Protective of diabetic nephropathy (ACEI/ARBs)

CHF (ACEI/ARBs)

λSide effects:

Dry cough (ACEIs)

Hyperkalemia

Acute renal failure in renal artery stenosis

Angioedema

λContraindication: pregnancy

92

CALCIUM-CHANNEL BLOCKERS (CCBs)

λBlock L-type Ca2+ channels in heart and blood vessels

λResults in intracellular Ca2+

λCauses CO (verapamil and diltiazem), TPR (all CCBs)

λDrugs: verapamil, diltiazem, dihydropyridines (“dipines,” prototype: nifedipine)

 

 

Ca2+-channel blockers

 

 

 

Heart

 

 

 

Blood vessel

 

 

 

 

 

 

 

 

 

VERAPAMIL

DILTIAZEM

“—DIPINEs”

Figure III-2-2. Cardiac or Vascular Selectivity of

Major Ca2+-Channel Blockers

λUses:

Hypertension (all drugs)

Angina (all drugs)

Antiarrhythmics (verapamil, diltiazem)

λSide effects:

Reflex tachycardia (“dipines”)

Gingival hyperplasia (“dipines”)

Constipation (verapamil)

DRUGS ALTERING SYMPATHETIC ACTIVITY

λβ blockers

Mechanism (See ANS section)

– Side effects:

ºCardiovascular depression

ºFatigue

ºSexual dysfunction

ºLDLs and TGs

Cautions in use:

ºAsthma

ºVasospastic disorders

ºDiabetics (alteration of glycemia and masking of tachycardia due to hypoglycemic events)

λα1 blockers

arteriolar and venous resistance

Reflex tachycardia

Drugs: prazosin, doxazosin, terazosin

Uses:

ºHypertension

ºBPH: urinary frequency and nocturia by the tone of urinary sphincters

Chapter 2 λ Antihypertensives

Bridge to Physiology

Vasodilators may have specificity.

λArteriolar: Ca2+-channel blockers, hydralazine, K+-channel openers

λVenular: nitrates

λBoth arteriolar and venular: “the rest”

Orthostatic (postural) hypotension results from venular dilation (not arteriolar) and mainly results from

α1 blockade or decreased sympathetic tone.

93

Section III λ Cardiac and Renal Pharmacology

Side effects:

º“First-dose” syncope

ºOrthostatic hypotension

ºUrinary incontinence

Advantage: good effect on lipid profile (HDL, LDL)

λα2 agonists: clonidine and methyldopa (prodrug)

α2 stimulation:

ºin sympathetic outflow

ºTPR but also HR

Uses:

ºMild-to-moderate hypertension (both)

ºOpiate withdrawal (clonidine)

ºHypertensive management in pregnancy (methyldopa)

Side effects:

ºPositive Coombs test (methyldopa)

ºCNS depression (both)

ºEdema (both)

Drug interactions:

º Tricyclic antidepressants antihypertensive effects of α2 agonists

Clinical Correlate

Cyanide Poisoning

Sodium nitrite or amyl nitrite can be used in cyanide poisoning. It

promotes formation of methemoglobin (MetHb), which binds CNions, forming cyanomethemoglobin. This prevents the inhibitory action of CNon complex IV of the electron transport chain. Cyanomethemoglobin is then reconverted to methemoglobin by treatment with sodium thiosulfate, forming the less toxic thiocyanate

ion (SCN). MetHb is converted to oxyhemoglobin with methylene blue.

Clinical Correlate

A hypertensive emergency occurs when hypertension is severe enough to cause end-organ damage. Most commonly, nitroprusside, labetalol, or the D1 agonist fenoldopam is given intravenously as therapy.

DIRECT-ACTING VASODILATORS

Drugs Acting Through Nitric Oxide

λHydralazine

TPR via arteriolar dilation

Use: moderate-to-severe hypertension

Side effects:

ºSLE-like syndrome and slow acetylators

ºEdema

ºReflex tachycardia

λNitroprusside

TPR via dilation of both arterioles and venules

Use: hypertensive emergencies (used IV)

Side effect: cyanide toxicity (co-administered with nitrites and thiosulfate; see Clinical Correlate)

Drugs Acting to Open Potassium Channels

λDrugs: minoxidil and diazoxide

Open K+ channel, causing hyperpolarization of smooth muscle

Results in arteriolar vasodilation

Uses:

ºInsolinoma (diazoxide)

ºSevere hypertension (minoxidil)

ºBaldness (topical minoxidil)

94

Side effects:

ºHypertrichosis (minoxidil)

ºHyperglycemia (insulin release [diazoxide])

ºEdema

ºReflex tachycardia

INDICATIONS FOR USE OF ANTIHYPERTENSIVE DRUGS IN COMORBID CONDITIONS

Table III-2-1. Use of Antihypertensive Drugs in Comorbid Conditions

Indication

 

Suitable Drug(s)

Angina

 

Beta blockers, CCBs

Diabetes

 

ACEIs, ARBs

Heart failure

 

ACEIs, ARBs, beta blockers

Post-MI

 

Beta blockers

BPH

 

Alpha blockers

Dyslipidemias

 

Alpha blockers, CCBs, ACEIs/ARBs

Chronic kidney disease

 

ACEI, ARBs

TREATMENT OF PULMONARY HYPERTENSION

λBosentan

Endothelin (ET)-1 is a powerful vasoconstrictor through ET-A and -B receptors

Bosentan is an ETA receptor antagonist

Administered orally

Side effects are associated with vasodilation (headache, flushing, hypotension, etc.)

Contraindication: pregnancy

λProstacyclin (PGI2): epoprostenol

Administered via infusion pumps

λSildenafil

– Inhibits type V PDE

cGMP

– Pulmonary artery relaxation

pulmonary hypertension

Chapter 2 λ Antihypertensives

Clinical Correlate

Chronic (preexisting) hypertension in pregnancy is often treated with methyldopa or labetalol, while

preeclampsia (new-onset hypertension in pregnancy) is treated with labetalol or hydralazine.

95

Section III λ Cardiac and Renal Pharmacology

Chapter Summary

λHypertension (HTN) is a major risk factor for stroke, heart failure, renal disease, peripheral vascular disease, and coronary artery disease. Factors inducing HTN include decreased vagal tone, increased sympathetic tone, increased renin-angiotensin activity, and excess water retention.

λTreatments for HTN aim to reduce sympathetic tone and blood volume and/ or relax vascular smooth muscle. However, homeostatic mechanisms may lead to compensatory increases in heart rate and/or salt and water retention.

λThe metabolic characteristics, clinical uses, and potential adverse effects of various hypertensives are discussed. Examples of each class are provided.

λThiazide diuretics are used to treat HTN. The diuretics are discussed in more detail elsewhere.

λDrugs that act via the renin-angiotensin system are the angiotensinconverting enzyme (ACE) inhibitors (e.g., captopril) and the angiotensin-II (AT-1) blockers (ARBs; e.g., losartan). Figure III-2-1 illustrates the angiotensin system and the pharmacologic effects of these drugs. Their clinical uses and adverse affects are discussed.

λCalcium channel blockers (CCBs) enhance vasodilation by blocking L-type Ca2+ channels in cardiac and vascular tissues. Drugs considered are verapamil, diltiazem, and dihydropyriodines.

λBeta blockers, alpha-1 blockers, and alpha-2 agonists alter sympathetic tone to lower blood pressure.

λDirect-acting vasodilators lower the peripheral vascular resistance mainly by causing arteriolar dilation. Drugs discussed are nitroprusside, hydralazine, minoxidil, and diazoxide.

λTable III-2-1 summarizes the use of antihypertensives in comorbid conditions.

λBosentan, epoprostenol, and sildenafil are used in pulmonary hypertension.

96

Drugs for Heart Failure

3

Learning Objectives

Describe the primary treatments for CHF

Demonstrate understanding of inotropes

Demonstrate understanding of other drugs used in CHF

 

 

 

 

 

 

 

 

 

 

 

 

 

Failing Heart =

 

CO

 

 

 

 

 

 

 

 

 

Compensation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strength of

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

contraction

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Decompensation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strength of

 

 

 

 

 

Contractility

 

Dilated heart

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

contraction

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Starlings compensation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

End diastolic

 

 

 

 

 

End systolic

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sympathetic

 

 

 

 

 

 

 

CO*

 

 

 

 

BP

 

 

 

 

volume

 

 

 

 

 

 

volume

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

activity

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Venous

 

 

 

 

Renal

 

 

 

 

 

 

Preload

 

 

 

 

 

BP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pressure

 

 

 

blood flow

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vasoconstriction

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Renin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Capillary

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

filtration

 

 

 

 

 

 

 

 

 

 

 

 

 

Afterload

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Angiotensin II

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pulmonary

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aldosterone

 

 

 

 

 

 

 

congestion

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Blood

 

 

 

 

 

 

 

 

 

 

 

 

 

Sodium

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

volume

 

 

 

 

 

 

 

 

 

 

 

 

 

 

retention

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* = starting point

 

 

 

 

 

 

 

 

 

Edema

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III-3-1. The Failing Heart

Clinical Correlate

Left systolic dysfunction secondary to coronary artery disease is the most common cause of heart failure.

97

Section III λ Cardiac and Renal Pharmacology

Pharmacotherapy aimed at:

λpreload: diuretics, ACEIs, ARBs, and venodilators

λafterload: ACEIs, ARBs, and arteriodilators

λcontractility: digoxin, beta agonists, PDE III inhibitors

λremodeling of cardiac muscle: ACEIs, ARBs, spironolactone, beta blockers

Whereas digoxin does not improve survival, ACEIs, ARBs, beta blockers, and spironolactone have been proven beneficial in CHF. ACEIs and ARBs are currently drugs of choice for the chronic management of CHF. Inotropes are more beneficial in management of acute CHF.

PRIMARY TREATMENTS FOR CHF

λACEI (ARB as an alternative)

λBeta blockers (metoprolol, bisoprolol, carvedilol)

Provide antiarrhythmic effect and also remodeling

λDiuretics

Loop or thiazide diuretics to decrease preload

Spironolactone or eplerenone to block aldosterone receptors and remodeling (used in advanced CHF)

λHydralazine + isosorbide dinitrate

Preferred for chronic therapy in patients who cannot tolerate an ACEI or ARB

 

INOTROPES

 

 

 

 

 

 

CARDIAC CELL

H+

DIGOXIN

2 K+

 

Sarcoplasmic

3 Na+

 

Na+

 

3 Na+

 

reticulum

Actin

 

 

 

 

Ca2+

+

Ca2+

Myosin

 

 

Ca2+

 

 

Ca2+

 

 

 

channel

 

2H+

 

 

+

 

 

Troponin/

 

 

via

AMP

tropomyosin

 

 

protein

 

 

 

Phosphodiesterase

 

INAMRINONE,

kinase A

 

 

 

 

 

 

 

 

 

 

 

 

ATP

 

MILRINONE

activation

 

 

 

 

cAMP

 

 

 

Adenylyl

cyclase (via Gs protein)

β1 receptor

DOBUTAMINE

Figure III-3-2. Mechanism of Action of Inotropes

98