
- •1. Уровни организации белковых молекул. Структуры белка и их краткая характеристика Ам-к состав белков, пептидная связь и ее физико-химическая характеристика.
- •2. Четвертичная структура белков. Особенности строения и функционирования олигомерных белков на примере гемсодержащих белков - гемоглобина и миоглобина.
- •3. Физико-химические свойства белков и их классификация. Потребность в белках. Азотистый баланс. Белковая недостаточность. Квашиокор.
- •5. Основные свойства белковых фракций крови и значение их определения для диагностики. Методы исследования. Эмбриоспецифические белки и их значение. Энзимо-диагностика.
- •8. Строение нуклеиновых кислот. Азотистые основания и сахара, входящие в состав днк и рнк. Нуклеозиды и нуклеотиды. Адениловые динуклеотиды (над, надф, фад). Денатурация и ренатурация днк(см.10в)
- •9. Вторичная структура днк и рнк. Комплементарность азотистыx оснований.
- •11. Общая характеристика витаминов, классификации, биологическое значение, источники, потребность, а- и гипервитаминозы. Кофакторы и коферменты.
- •12. Витамины и коферменты. Роль флавиновых коферментов.
- •13. Витамин b1(тиамин), его строение и медико-биологическое значение.
- •14. Тиаминпирофосфат, его строение и биологическая роль.
- •15. Биотин и витамин в12(кобаламин, антианемический). Роль этих витаминов в биосинтезах.
- •25. Роль биотина и витамина b12 в клеточном метаболизме.
- •17. Строение фад и его роль в клеточном метаболизме.
- •2 9. Витамины в2 и рр их химическое строение и роль в клеточном метаболизме.
- •30. Витамин а(ретинол, антисерофтальмический), его химическое строение и роль в обмене веществ клеток. Основные пищевые источники витамина а.
- •31. Витамины группы d, их строение и физиологическая роль.
- •3 2.Аскорбиновая кислота. Строение и физиологические функции.
- •34. Витамины е и к, их химическое строение и медико-биологическое значение. Витамин е см.33.
- •35. История открытия и изучения ферментов. Особенности ферментативного катализа.
- •36. Особенности ферментативного катализа. Специфичность действия ферментов. Основные представления о механизме ферментативного катализа.
- •37. Современные представления о механизмах действия ферментов. Мультиферментные комплексы на примере структуры синтазы жирных кислот.
- •42. Регуляция активности ферментов. Различные способы активации и ингибирования ферментов.
- •44. Классификация и номенклатура ферментов. (см.39в) Виды энзимопатологий. Наследственные энзимопатии.
- •45. Строение окисленного и восстановленного над. Важнейшие субстраты над-зависимых дегидрогеназ. Представление о надн-дегидрогеназах и других переносчиках электронов внутренней мембраны митохондрий.
- •47. Различия ферментного состава тканей. Изменения активности ферментов в процессе развития. Изоферменты и энзимодиагностика.
- •48. Различия ферментного состава органов и тканей. Органоспецифичные ферменты. Изменения активности ферментов в процессе развития. Изоферменты и энзимодиагностика.
- •56. Амфиболические функции цикла трикарбоновых кислот.
- •57. Анаболические функции цикла лимонной кислоты. Реакции, пополняющие цитратный цикл.
- •54. Представление о процессах окислительного фосфорилирования. Надн-дегидрогеназа как компонент дыхательной цепи.
- •57. Дыхательная цепь митохондрий, ее строение и основные принципы функционирования. Теории сопряжения окисления и фосфорилирования
- •64. Иерархия регуляторных систем. Место гормонов в системе регуляции метаболизма. Механизмы передачи гормонального сигнала в клетку.
- •67 Гормоны задней доли гипофиза
- •73. Прогестерон, его физико-химическая характеристика и биологические функции
- •80 Краткая характеристика гомо- и гетерополисахаридов. Их биологическое и физиологическое значение.
- •84 Наследственные нарушения обмена моносахаридов и дисахаридов: галактоземия, непереносимость фруктозы, непереносимость дисахаридов.
- •86. Глюкозо-6-фосфат, схема путей его образования и использования в организме.
- •87 Синтез гликогена и гликогенолиз-распад
- •90. Гликогенолиз и его биологическое значение.
- •88. Пути синтеза полисахаридов. Роль утф в синтезе полисахаридов. Регуляция синтеза и распада полисахаридов. Гликогенозы и биохимические механизмы их возникновения.
- •89. Свойства и строение гликогена. Биосинтез гликогена. Мобилизация гликогена и его гормональная регуляция.
- •90, 91 Гликолиз, биологическое значание.
- •93. Анаэробный гликолиз. Гликолитическая оксидоредукция, субстратное фосфорилирование.
- •94. Молочнокислое брожение –
- •95 Метаболические превращения пвк.
- •96. Окислительное декарбоксилирование пвк(см.58-59)
- •99.Глюконеогенез.См.Выше и в метаболизме*
- •112.Классификация липидов. Роль в жизнедеят-ти клетки. Метаболизм липопротеинов, транспорт липидов между органами и тканями. Нарушение обмена липидов при сердечно-сосудистых.
- •124. Окисление ненасыщенных жирных кислот, метаболические особенности этого процесса.
- •129.Фосфолипиды, разновидности, структура, роль в построении биомембран и в формировании их функциональных особенностей(см.121,119).
- •130. Желчные кислоты и их роль в переваривании липидов. Связь с обменом холестерина.
- •133. Биосинтез кефалина и лецитина и их биологическая роль(см.135)
- •134. Биосинтез фосфолипидов и их биологическая роль.
- •135. Биосинтез лецитина и его биологическое значение. Липотропные факторы.
- •136. Строение холестерина и его биологическое значение. Представление о биосинтезе холестерина.
- •138. Представление о биологическом значении и метаболизме холестерина.
- •140. Ресинтез триацилглицеринов в стенке кишечника. Образование хиломикронов и транспорт жиров. Роль аполипопротеинов в составе хиломикронов. Липопротеинлипаза.
- •141. Краткая характеристика липопротеидов крови. Роль апопротеинов в функционировании липопротеидов. Диагностическое значение определения липопротеинов в клинике.
- •142. Хиломикроны, их физико-химическая характеристика и физиологическое значение.
- •144. Кетоновые тела, структура, механизмы образования и окисления. Кетогенез при голодании и сахарном диабете. Резистентность и склонность к кетозу у детей.(см.143).
- •145. Образование кетоновых тел, химизм реакции, биологическое значение. Основные причины их избыточного образования(см.Выше)
- •146. Роль печени в липидном обмене.
- •151. Рекции переаминирования и трансдезаминирования и их значение в метаболизме клеток.
- •164. Метионин и его роль в обмене веществ. S-аденозилметионин, как липотропный фактор.
- •165. Роль лизина и аргинина в клеточном метаболизме.
- •167. Строение днк эукариотических клеток и механизмы, лежащие в основе ее пространственной упаковки. Многообразие азотистых оснований. Функции нуклеиновых кислот в живых организмах.
- •168. Генетический код и его характеристика. Молекулярные механизмы возникновения наследственных болезней. Краткое описание процесса трансляции.
- •170. Синтез белка на рибосомах. Условия необходимые для реализации этого процесса.
- •172. Распад пуриновых оснований. Химизм процесса и его медико-биологическое значение. Подагра.
- •173. Распад пуриновых оснований. Химизм процесса и его медико-биологическое значение. Подагра.(см.172)
- •175. Распад гема. Образование и пути выделение билирубина. Желтухи, диагностика. Характеристика распада гемоглобина в неонатальном периоде. Физиологическая желтуха новорожденных.
- •176. Биосинтез гема и его регуляция. Химизм реакций до порфобилиногена, представление о дальнейших путях синтеза гема. Порфирии.
- •178. Незаменимые факторы питания и их медико-биологическое значение. Необходимость оптимального обеспечения детского организма незаменимыми факторами питания.
- •179. Основные пищевые вещества: углеводы, жиры, белки; суточная потребность, переваривание; частичная взаимозаменяемость при питании.
- •180. Обмен веществ: питание, метаболизм и выделение продуктов метаболизма. Состав пищи человека. Органические и минеральные компоненты. Основные и минорные компоненты.
164. Метионин и его роль в обмене веществ. S-аденозилметионин, как липотропный фактор.
Метионин присоединяет аденозильный остаток и превращается в активную форму метионина-S-аденозилметионин, участвующий во многих р-циях метилирования, в частности в синтезе креатинина, карнитина, лецитина, адреналина. В рез-те перемещения метильной группы и отщепления аденозина остается гомоцистеин.
165. Роль лизина и аргинина в клеточном метаболизме.
165.
Роль тирозина в метаболизме человека
и животных. –частично
заменимая ам-к. относится к смешанным
(гликокетонным)ам-к в мозговом в-ве
синтезируются катехоламины. Нарушение
катаболизма тирозина на стадии расщепления
гомогентизиновой к-ты приводит к
алкаптонурии («черная моча». Врожденная
болезнь. Наследственный дефект
тирозиназы-фермента, катализирующего
в меланоцитах превращение из тирозина
в ДОФА вызывает наруш.синтеза темных
пигментов кожи-к альбинизму. Недостаточность
дошамина приводит к болезни Паркинсона-
симптомы – акинезия(скованность).
ригидность(напряж.мышц), тремор.
166. Химическое строение триптофана и пути его метаболизма. Незаменимая ам-к. Биологич.активное в-во-серотонин. Физиол.роль -возбуждающий медиатор средних отделов мозга.
При
недостатке витамина B6 нарушение
образования из триптофана никотиновой
кислоты может привести к нарушению
синтеза пиридиновых нуклеотидов , NAD +
и NADP +.
Метаболические
нарушения катаболизма триптофан а.
Болезнь Хартнупа , наследственное
нарушение метаболизма триптофана,
характеризуется появлением сыпи на
коже , как при пеллагре , перемежающейся
мозжечковой атаксией и умственной
отсталостью.
167. Строение днк эукариотических клеток и механизмы, лежащие в основе ее пространственной упаковки. Многообразие азотистых оснований. Функции нуклеиновых кислот в живых организмах.
Днк-линейный полимер, состоящий из нуклеотидов-азотистого основания (произв.пурина/пиримидина)-А,Г,Ц,Т, пентозы(дезоксирибозы) и остатка фосфорной к-ты. ДНК имеют первичную, вторичную и третичную структуры. Первичная струтура - полинуклеотидная цепь, состоящая из расположенных друг за другом нуклеотидов, связанных между собой эфирными связями. Каждый нуклеотид состоит из остатка фосфорной кислоты, углевода дезоксирибозы и одного из 4-х озотистых оснований (аденина, гуанина, цитозина или тимина).
вторичная структура ДНК - две комплиментарные и антипараллельные полинуклеотидные цепи, связанные через соответствующие азотистые основания водородными связями :а-т, г-ц
Третичная структура ДНК - двойная спираль диаметром 2 нм, длиной шага 3,4 нм и 10 парами нуклеотидов в каждом витке.
б) Функция ДНК: хранение и передача наследственной информации, записанной с помощью генетического кода
168. Генетический код и его характеристика. Молекулярные механизмы возникновения наследственных болезней. Краткое описание процесса трансляции.
Ген.код -свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.Св-ва: -триплетность, -однозначность (дискретность-один триплет не может кодировать 2разные ам-к), - избыточность(вырожденность – каждая ам-к может может определяться более чем одним триплетом), -неперекрываемость (одно и тоже основание не может одновременно входить в 2соседних кодона). –полярность(триплеты-знаки препинания), -универсальность.
Механизм возникновения заболеваний-мутации- Изменения в последовательности пуриновых или пиримидиновых оснований в гене, не исправленные ферментами репарации. Трансляция— процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК, мРНК), осуществляемый рибосомой. Процесс разделяют на инициацию — узнавание рибосомой стартового кодона и начало синтеза. элонгацию — собственно синтез белка. терминацию — узнавание терминирующего кодона (стоп-кодона) и отделение продукта.
169. Строение рибосом прокариот и эукариот. Роль рибосом в биосинтезе белка. Рибосомы – немембранные органеллы, состоящая из рРНК и рибосомных белков. Субъединицы рибосом обычно обозначаются единицами Сведберга (S), является мерой скорости седиментации при центрифугирования и зависят от массы, размера и формы частицы. рибосомы эукариот значительно больше чем у прокариот. Рибосома осуществляет биосинтез белков транслируя мРНК в полипептидную цепь