
- •1. Предмет, задачи, методы генетики. Этапы развития генетики.
- •Механизмы генотипического определения пола у организмов разных биологических видов.
- •Понятие о половом хроматине. Теория «компенсации дозы генов».
- •Работы т.Моргана по экспериментальному доказательству хромосомной теории. Объект исследования и методические особенности его работ.
- •Наследование, сцепленное с полом. Примеры у человека.
- •Понятие о наследовании, ограниченном полом и контролируемым полом.
- •Голандрическое наследование. Примеры у человека.
- •Сцепление генов (полное, неполное). Группы сцепления у разных биологических видов.
- •Биологическое значение кроссинговера.
- •Основные положения хромосомной теории наследственности.
- •Принципы построения генетических карт. Картирование хромосом человека и его значение.
- •Понятие о цитоплазматической наследственности.
- •Плазмогены митохондрий и хлоропластов, плазмиды, эписомы и их роль в цитоплазматической наследственности.
- •Генная инженерия и ее значение для природы и общества.
- •Аллельные и неаллельные гены (опредедения).
- •Понятие о действии генов.
- •Перечислите типы взаимодействия между аллельными и неаллельными генами.
- •Сущность полного доминирования. Примеры.
- •Неполное доминирование. Примеры.
- •Сверхдомининрование как основа гетерозиса. Примеры.
- •Кодоминирование и его сущность. Примеры.
- •Теория множественных аллелей. Наследование групп крови системы ав0.
- •Понятие о комплиментарном взаимодействии генов. Примеры.
- •Эпистатическое взаимодействие генов. Примеры.
- •Полимерия и ее роль в детерминации количественных признаков. Аддитивный эффект.
- •Плейотропное действие генов. Примеры.
- •Назовите основные биометрические характеристики, испльзуемые при генетико-математическом анализе количественных признаков.
- •Понятие о варианте и вариационном ряде.
- •Сущность средней арифметической, среднего квадратического отклонения, дисперсии и методы их расчета.
- •Понятие о пенетрантности и экспрессивности генов.
- •Фенотипическая дисперсия и основные ее компоненты.
- •Фенотипическая дисперсия
- •Изменчивость как свойство живого (определение).
- •Перечислите формы изменчивости и рассмотрите их роль в онтогенезе и эволюции.
- •Сущность модификационной изменчивости.
- •Понятие о норме реакции. Пластичность признаков.
- •Комбинативная изменчивость и ее механизмы.
- •Понятие о мутации. Частота возникновения мутаций.
- •Классификация и характеристика мутаций, возникающих на разных уровнях организации наследственного материала.
- •Гаметические и соматические мутации, их биологическая роль.
- •Понятие о мутагенезе. Его разновидности.
- •Факторы мутагенеза и их характеристика.
- •Сущность трансформационной изменчивости.
- •Репарация генетического материала и ее механизмы.
- •Генетика человека как наука. Ее предмет и задачи.
- •История развития генетики человека.
- •Особенности генетического анализа у человека.
- •Сущность генеалогического метода и задачи, решаемые с помощью него в генетике человека.
- •Принципы построения родословных и используемая при этом символика.
- •Близнецовый метод, его сущность и задачи, решаемые с помощью него в генетике человека.
- •Типы близнецов и их характеристика. Причины и частота рождения близнецов.
- •Оценка роли генетических и средовых факторов в формировании качественных и количественных признаков по данным близнецовых исследований.
- •Сущность популяционно-статистического метода и задачи, решаемые с помощью него в генетике человека.
- •Закон Хайди-Вайнберга. Условия идеальной популяции.
- •Приведите формулы для расчета частот генов и генотипов по эритроцитарным изоантигенам в популяции человека (системы ав0, резус, mn).
- •Биохимический метод и его использование в генетике человека.
- •Сущность цитогенетического метода и его применение в генетике человека.
- •Дерматоглифический метод и его использование в генетике человека.
- •Молекулярно-генетический метод генетики человека.
- •Методы генетики соматических клеток.
- •Медицинская генетика как наука, ее предмет и задачи.
- •Подходы к классификации наследственных болезней.
- •Общая характеристика генных болезней.
- •Типы наследования генных болезней. Примеры.
- •Рассмотрите на примере известных вам генных болезней механизмы их развития.
- •Общая характеристика хромосомных болезней.
- •Перечислите виды хромосомных и геномных мутаций.
- •Рассмотрите известные вам хромосомные синдромы.
- •Понятие о мультифакториальных болезнях.
- •Мультифакториальные заболевания, или болезни с наследственным предрасположением
- •Перечислите наиболее распространенные мультифакториальные болезни и рассмотрите роль генетических и средовых факторов в их возникновении.
- •Основные направления лечебной коррекции наследственной патологии.
- •Сущность пренатальной диагностики.
- •Цель и задачи медико-генетического консультирования.
Плазмогены митохондрий и хлоропластов, плазмиды, эписомы и их роль в цитоплазматической наследственности.
Плазмиды – широко распространенные в клетке внехромосомные генетические элементы, которые могут самостоятельно существовать и размножаться автономно от хромосомной ДНК.
Эписомы – это плазмиды, которые реплицируются не автономно, а в составе хромосомной ДНК, в которую они включаются в определенные моменты.
В прокариотической клетке имеются плазмиды, которые отвечают за способность бактерий к коньюгации и за устойчивость к некоторым лекарственным средствам.
В эукариотической клетке плазмиды представлены митохондриями, пластидами и нуклеотидными последовательностями.
Генетический материал плазмид содержится в матриксе и их ДНК не связана с гистоновыми белками.
Плазмон – это совокупность генов, расположенных в цитоплазматической молекуле ДНК .
Наследственность цитоплазматическая (внеядерная, нехромосомная, плазматическая), преемственность материальных структур и функциональных свойств организма, которые определяются и передаются факторами, расположенными в цитоплазме.
Совокупность этих факторов - плазмагенов, или внеядерных генов, составляет плазмон (подобно тому, как совокупность хромосомных генов - геном). Плазмагены находятся в самовоспроизводящихся органеллах клетки - митохондриях и пластидах (в том числе хлоропластах и др.). Указанием на существование цитоплазматической наследственности служат, прежде всего, наблюдаемые при скрещиваниях отклонения от расщеплений признаков, ожидаемых на основе законов Менделя. Цитоплазматические элементы, несущие плазмагены, расщепляются по дочерним клеткам беспорядочно, а не закономерно, как гены, локализованные в хромосомах. Плазмагены передаются главным образом через женскую половую клетку (яйцеклетку), так как мужская половая клетка (спермий) почти не содержит цитоплазмы (что, однако, не исключает передачи плазмагенов через мужские гаметы). Поэтому изучение цитоплазматической наследственности ведётся с использованием специальных схем скрещивания, при которых данный организм (или группа) используется и как материнская, и как отцовская форма (реципрокное скрещивание).
Генная инженерия и ее значение для природы и общества.
Генная инженерия (генетическая инженерия) – совокупность методов и технологий, в том числе технологий получения рекомбинантных рибонуклеиновых и дезоксирибонуклеиновых кислот, по выделению генов из организма, осуществлению манипуляций с генами и введению их в другие организмы [1].
Генная инженерия – составная часть современной биотехнологии, теоретической основой ее является молекулярная биология, генетика. Суть новой технологии заключается о направленном, по заранее заданной программе конструировании молекулярных генетических систем вне организма (in vitro) с последующим внедрением созданных конструкций в живой организм. В результате достигается их включение и активность в данном организме и у его потомства. Возможности генной инженерии – генетическая трансформация, перенос чужеродных генов и других материальных носителей наследственности в клетки растений, животных и микроорганизмов, получение генно-инженерно-модифицированных (генетически модифицированных, трансгенных) организмов с новыми уникальными генетическими, биохимическими и физиологическими свойствами и признаками, делают это направление стратегическим.
С точки зрения методологии генная инженерия сочетает в себе фундаментальные принципы (генетика, клеточная теория, молекулярная биология, системная биология), достижения самых современных постгеномных наук: геномики, метаболомики, протеомики с реальными достижениями в прикладных направлениях: биомедицина, агробиотехнология, биоэнергетика, биофармакология, биоиндустрия и т.д.
Генная инженерия относится (наряду с биотехнологией, генетикой, молекулярной биологией, и рядом других наук о жизни) к сфере естественных наук.