
- •11.1 Основные понятия и определения автоматического управления.
- •11.2 Основные понятия и определения автоматического управления.
- •19. Преобразование Лапласа, его основные свойства и методика использования при анализе переходных процессов в аср. Передаточные функции элементов и систем.
- •52. Методы измерений.
- •59. Динамические свойства объектов управления.
- •32 Структурная схема увк
- •31 Расходомеры переменного перепада давления и тахометрические расходомеры: устройство, принцип, достоинства и недостатки
- •30 Влияние и составляющей закона регулирования на качество переходных процессов аср
- •29 Расходомеры постоянного перепада давления. Индукционные расходомеры: устройство, принцип действия, область применения
- •28 Влияние д составляющей закона регулирования на качество переходных процессов аср(на примере пд регулятора)
- •37 Структура распределенной асутп
- •46 Электрические исполнительные механизмы: электродвигательные и электромагнитные
- •54 Ультразвуковые расходомеры, устройство, принцип действия, достоинства и недостатки
- •16. Регуляторы прямого действия: кустройство, пд и область применения.
- •18.Термометры расширения:устр-во , пд и область применения.
- •1.Термометры сопротивления : устройство , пд область применения
- •7. Расходомеры
- •8. Влияние п-состовляющей закона регулирования на качество переходных процессов аср.
- •3. Назначение и пд потенциометрических и дифференциально-трансформаторного передающих преобразователей.
- •25. Назначение и пд электросилового и электропневматического преобразователей.
- •26. Порядок выбора типа автоматического регулятора и определение его настроечных параметров.
- •24. Термопреобразователи сопротивления:устройство, пд. Источники возникновения погрешностейпри измерении температуры термометрами сопротивления и методы их компенсации.
- •6. Уровнемеры и сигнализаторы уровня:устройства ,пд. Источники возникновения погрешности и способы их компенсации.
- •42. Цап(Цифро-аналоговый преобразователь) :схема , пд.
- •33. Преобразователи температуры: классификация, области применения.
- •24. Принцип действия термоэлектрических преобразователей
- •9. Статистика и динамика аср. Способы получения уравнений динамики, линейные системы. Линеаризация характеристик реальных элементов.
- •10. Милливольтметры, потенциометры - назначение, принцип действия.
- •56. Устойчивость аср. Критерий устойчивости Гурвица
- •2.Логические элементы: и, или, не.
- •41. Структурная схема увк (Управляющий вычислительный комплекс)
- •36.38 Структурные схемы устройств дискретного ввода и вывода информации.
- •44. Цель и задачи автоматизации.
- •48. Служба ответственности за авт-цию, их ф-ции.
- •5. Элементы метрологии.
- •27. Деформационные манометры
- •55.Расходомер Кориолиса: подробно простым языком
- •12. Структурные схемы соединения типовых звеньев и их преобразование
- •15. Исполнительные механизмы
- •21. Статика и динамика аср
- •22. Логометры, уравновешенные мосты
- •40. Ацп: схема , принцип действия
- •47. Погрешности измерений
- •50.Программирование логические контроллеры(плк)
- •53.Метрологические характеристики
- •57. Регулирующие органы
- •4. Позиционные аср: характер переходных процессов, показатели качества, область применения
- •13.Манометрические термометры…
- •14.Многоконтурные аср….
- •20.Функциональная структура и классификация измерительных устройств.
- •23.Объекты регулирования и их классификация
- •45.Автоматические регуляторы….
- •49.Определение и общая структура scada
- •51.Структурная схема и основная схема дискретного вывода
- •58. Жидкостные манометры, принцип действия, преимущества, недостатки.
- •3 4. Структурная схема цифровой системы управления на основе контроллера.
- •35. Логический элемент и-не,или-не . Rs-триггер
- •36. Структурная схема устройств аналогового ввода информации
- •Апериодический переходной процесс с минимальным временем регулирования:
- •60. Структурная схема и функция устройства аналогового вывода
- •39.1. Первичные измерительные преобразователи
- •39.2. Первичные измерительные преобразователи
60. Структурная схема и функция устройства аналогового вывода
ЦАП вырабатывает аналоговый сигнал, пропорционально цифровому значению поступающего от процесса. Устройство управления обеспечивает связь с ЦП и передачу данных к ЦАП. Выходные сигналы ЦАП (напряжение или ток) приводятся к виду, требуемого для управления исполнительного устройства.
Как следует из рис, устройство ввода аналоговых сигналов представляет в общем случае многоканальную подсистему сбора аналоговых данных с временным разделением измерительных каналов, реализуемым мультиплексором аналоговых сигналов MAC. За счет такого решения снижается стоимость аппаратных средств, приходящаяся на один измерительный канал. Поскольку входная информация поступает от источников, сигналы которых могут заметно различаться как по скорости измерения, так и по динамическому диапазону, необходимы устройства, согласующие возможности АЦП с характеристиками сигналов. Эту роль выполняют устройства выборки и хранения СВХ, а также измерительные усилители с программируемым коэффициентом усиления ИУ
.ДОПЛНИТЕЛЬНО. Основным элементом устройств вывода аналоговых данных являются цифроаналоговые преобразователи ,в которых информация, поступающая от цифрового процессора, преобразуется в форму аналоговых управляющих сигналов.Конструктивно интерфейсы ввода-вывода аналоговой информации выпускают в настоящее время в виде отдельных плат или модулей и интегральных схем, механически и электрически совместимых с определенными типами вычислительных машин, на которые ориентируется изготовитель. Здесь уместно отметить, что практически все зарубежные фирмы, производящие вычислительную технику, особенно микропроцессорную, выпускают аналоговые интерфейсы ввода-вывода.
39.1. Первичные измерительные преобразователи
Первичные приборы, датчики или первичные преобразователи предназначены длянепосредственного преобразования измеряемой величины в другую величину, удобную для измерения илииспользования. Выходными сигналами первичных приборов, датчиков являются как правилоунифицированные стандартизованные сигналы, в противном случае используются нормирующие преобразователи (см. рис.1).
Различают генераторные, параметрические и механические преобразователи:
Генераторные осуществляют преобразование различных видов энергии в электрическую, то есть они генерируют электрическую энергию (термоэлектрические, пьезоэлектрические, электрикинетические, гальванические и др. датчики).
К параметрическим относятся реостатные, тензодатчики, термосопротивления и т.п. Данным приборам для работы необходим источник энергии.
Выходным сигналом механических первичных преобразователей (мембранных, манометров, дифманометров, ротаметров и др.) является усилие, развиваемое чувствительным элементом под действием измеряемой величины.
Пояснения к рисунку 1. Первичный преобразователь, датчик Д может иметь выходной унифицированный сигнал см.рис.1.8.а и неунифицированный сигнал см.рис.1.8.б. Во втором случае используют нормирующие преобразователи НП.
Нормирующий преобразователь НП выполняет следующие функции: преобразует нестандартный неунифицированный сигнал (например, mV, Ом) в стандартный унифицированный выходной сигнал;осуществляет фильтрацию входного сигнала; осуществляет линеаризацию статической характеристики датчика; применительно к термопаре, осуществляет температурную компенсацию холодного спая.
Нормирующий преобразователь НП применяется, также в следующих случаях: когда необходимо подать сигнал измеряемой величины на несколько измерительных или регулирующих приборов; а также когда необходимо передать сигнал на большие расстояния, например сигнал от термопары передается на малые расстояния - до 10м, а унифицированный сигнал постоянного тока может передаваться на большие расстояния - до 100м.В современных промышленных регуляторах нормирующий преобразователь НП как правило является обязательной составной частью входного устройства регулятора.
ПЕРВИЧНЫЕ ПРЕОБРАЗОВАТЕЛИ ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ:
По термодинамическим свойствам, используемым для измерения температуры, можно выделить следующие типы термометров: