- •Оглавление
- •Естествознание в системе науки и культуры
- •Принципы, формы и методы научного познания
- •Общие принципы научного познания
- •Формы научного познания
- •Методы научного исследования
- •Особая роль математики в естествознании
- •Естествознание и научная картина мира
- •Понятие научной картины мира
- •Историческая смена физических картин мира
- •Панорама современного естествознания
- •Естествознание в аспекте научно-технической революции
- •Тенденции развития естествознания
- •Проблема классификации наук
- •История естествознания
- •Зарождение эмпирического научного знания
- •Античная наука
- •Александрийский период развития науки
- •Развитие науки арабских и среднеазиатских народов в средние века
- •Период схоластики
- •Научная революция XVI–XVII вв.
- •Революция в астрономии
- •Экспериментальный метод Галилея
- •Становление физики как самостоятельной науки
- •Революция в математике
- •Развитие научных методов в естествознании
- •Развитие естествознания в хviii в.
- •Физические концепции естествознания
- •Механистическая картина мира
- •Принцип относительности Галилея
- •Механика Ньютона
- •Характерные особенности механистической картины мира
- •Развитие концепций термодинамики и статистической физики
- •Вещественная и корпускулярная теории теплоты
- •Необратимость времени в термодинамике
- •Первое и второе начала термодинамики
- •Принцип возрастания энтропии, хаос и порядок
- •Статистический подход к описанию макросистем
- •Развитие концепций электромагнитного поля
- •"Экспериментальные исследования по электричеству" Фарадея
- •Теория электромагнетизма Максвелла
- •Корпускулярная и континуальная концепция описания природы
- •Развитие представлений о свете
- •Концепция дальнодействия и близкодействия
- •Развитие концепций пространства и времени в специальной теории относительности
- •Принцип относительности
- •Преобразование Лоренца
- •Релятивистская механика
- •Четырехмерное пространство-время в специальной теории относительности
- •Экспериментальное подтверждение специальной теории относительности
- •Общая теория относительности
- •Принцип эквивалентности
- •Экспериментальное подтверждение общей теории относительности
- •Философские выводы из теории относительности
- •Симметрия пространства и времени и законы сохранения
- •Мегамир в его многообразии и единстве
- •Галактики и структура Вселенной
- •Солнечная система
- •Концепция расширения Вселенной
- •Эволюция Вселенной
- •Концепция большого взрыва
- •Принципы организации микромира
- •Развитие концепции атомизма
- •Теория атома Бора – мост от классики к современности
- •Корпускулярно-волновые свойства микрочастиц
- •Принцип неопределенности
- •Принцип дополнительности
- •Описание микрообъектов в квантовой механике
- •Принцип суперпозиции
- •Принцип тождественности
- •Принципы причинности и соответствия в квантовой механике
- •Фундаментальные взаимодействия в природе
- •Гравитационное взаимодействие
- •Электромагнитное взаимодействие
- •Сильное взаимодействие
- •Слабое взаимодействие
- •Элементарные частицы
- •Характеристики элементарных частиц
- •Классификация элементарных частиц
- •Структурные уровни организации материи
- •Развитие химических концепций
- •Учение о составе вещества
- •Первые представления о химическом элементе
- •Закон постоянства состава
- •Закон простых кратных отношений
- •Гипотеза Авогадро
- •Атомно-молекулярное учение
- •Закон сохранения массы и энергии
- •Периодический закон Менделеева
- •Электронное строение атома
- •Структура химических систем
- •Теория химического строения Бутлерова
- •Химическая связь
- •Физико-химические закономерности протекания химических процессов
- •Энергетика химических процессов
- •Химическая кинетика
- •Понятие о катализе и катализаторах
- •Реакционная способность веществ
- •Обратимые реакции и состояние химического равновесия
- •Развитие химии экстремальных состояний
- •Особенности биологического уровня организации материи
- •Свойства живых систем
- •Уровни организации живой природы
- •Молекулярный уровень
- •Клеточный уровень
- •Органно-тканевый уровень
- •Организменный уровень
- •Популяционно-видовой уровень
- •Биогеоценотический и биосферный уровни
- •Клетка – структурная и функциональная единица живых организмов
- •Клеточная теория
- •Химический состав клеток
- •Клеточные и неклеточные формы жизни
- •Систематика живой природы
- •Генетика
- •Законы Менделя
- •Хромосомная теория наследственности
- •Изменчивость
- •Генетика человека
- •Генная инженерия и биоэтика
- •Принципы эволюции живых систем
- •Общее понятие прогресса и его проявление в живой природе
- •Ламаркизм
- •Дарвинизм. Эволюция путем естественного отбора
- •Развитие дарвинизма. Основные факторы и движущие силы эволюции
- •Доказательства эволюции живой природы
- •Биохимическая эволюция
- •Основные подходы к проблеме происхождения жизни
- •Химическая эволюция
- •Коацерватная стадия в процессе возникновения жизни
- •Начальные этапы развития жизни на Земле
- •Происхождение и эволюция человека
- •Положение человека в системе животного мира
- •Отряд приматов
- •Происхождение человека
- •Этапы эволюции человека
- •Биосфера и человек
- •Концептуальные подходы к изучению биосферы
- •Многообразие живых организмов – основа организации и устойчивости биосферы
- •Биогеохимические циклы в биосфере
- •Эволюция биосферы
- •Ноосфера. Путь к единой культуре.
- •Охрана биосферы
- •Влияние космоса на земные процессы
- •Современная наука о человеке
- •Здоровье и работоспособность человека
- •Физиология человека
- •Мозг и сознание
- •Сознание – функция мозга
- •Смерть мозга и морально-этические и правовые проблемы
- •Структура субъективного мира человека
- •Эмоции, чувства и интеллект
- •Сознание и самосознание
- •Сознательное и бессознательное
- •Творчество
- •Системный подход в естествознании
- •Принципы эволюции систем
- •Самоорганизация в живой и неживой природе
- •Заключение
- •Литература
Философские выводы из теории относительности
Специальная теория относительностибыла первой физической теорией, которая радикально изменила взгляды ученых на пространство, время и движение. Если раньше пространство и время рассматривались обособленно от движения материальных тел, а само движение независимо от систем отсчета, т.е. как абсолютное, то с возникновением специальной теории относительности было твердо установлено:
всякое движение может описываться только по отношению к другим телам, которые могут приниматься за системы отсчета, связанные с определенной системой координат;
пространство и время тесно взаимосвязаны друг с другом, ибо только совместно они определяют положение движущегося тела. Именно поэтому время в теории относительности выступает как четвертая координата для описания движения, хотя и отличная от пространственных координат;
одинаковость формы законов механики для всех инерциальных систем отсчета сохраняет свою силу и для законов электродинамики, но только для этого вместо преобразований Галилея используются преобразования Лоренца;
при обобщении принципа относительности и распространении его на электромагнитные процессы, постулируется постоянство скорости света, которое никак не учитывается в механике.
Общая теория относительностиотказывается от такого ограничения, также как и от требования рассматривать лишь инерциальные системы отсчета, как это делает специальная теория. Благодаря такому глубокому обобщению она приходит к выводу:все системы отсчета являются равноценными для описания законов природы.
С философской точки зрения наиболее значительным результатом общей теории относительности является установление зависимости пространственно-временных свойств окружающего мира от расположения и движения тяготеющих масс.
Именно благодаря воздействию тел с большими массами происходит искривление путей движения световых лучей. Следовательно, гравитационное поле, создаваемое такими телами, определяет в конечном итоге пространственно-временные свойства мира. В специальной теории относительности абстрагируются от действия гравитационных полей и поэтому ее выводы оказываются применимыми лишь для небольших участков пространства-времени. Концепцию относительности, лежащую в основе общей и специальной физической теории, не следует смешивать с принципом относительности наших знаний, в том числе и в физике. Если первая из них касается движения физических тел по отношению к разным системам отсчета, т.е. характеризует процессы, происходящие в объективном, материальном мире, то вторая относится к росту и развитию нашего знания, т.е. касается мира субъективного, процессов изменения наших представлений об объективном мире.
Преемственная связь между общей и специальной теорий относительности выражается принципом соответствия– методологическим принципом, устанавливающим связь между старыми и новыми теориями.
Симметрия пространства и времени и законы сохранения
Связь между симметрией пространства и законами сохранения установила немецкий математик Эмми Нетер (1882–1935). Она сформулировала и доказала фундаментальную теорему математической физики, названную ее именем, из которой следует, что из однородности пространства и времени вытекают законы сохранения соответственно импульса и энергии, а из изотропности пространства – закон сохранения момента импульса.
Эта теорема выражает принцип инвариантности относительно сдвигов в пространстве и во времени, т.е. параллельных переносов начала координат, и начала отсчета времени:смещение во времени и в пространстве не влияет на протекание физических процессов.Указанный принцип является следствиемоднородности пространства и времени:
однородность пространства заключается в том, что при параллельном переносе в пространстве замкнутой системы тел как целого ее физические свойства и законы движения не изменяются, иными словами, не зависят от выбора положения начала координат инерциальной системы отсчета.
однородность времени означает инвариантность физических законов относительно выбора начала отсчета времени. Например, при свободном падении тела в поле силы тяжести его скорость и пройденный путь зависят лишь от начальной скорости и продолжительности свободного падения тела и не зависят от того, когда тело начало падать.
С однородностью пространства связан закон сохранения импульса: импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени. Закон сохранения импульса справедлив не только в классической физике, хотя он и получен как следствие законов Ньютона. Эксперименты доказывают, что он выполняется и для замкнутых систем микрочастиц, подчиняющихся законам квантовой механики. Импульс сохраняется и для незамкнутой системы, если геометрическая сумма всех внешних сила равна нулю. Закон сохранения импульса носит универсальный характер и является фундаментальным законом природы.
С однородностью времени связан закон сохранения механической энергии: в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т.е. не изменяется со временем. Консервативные силы действуют только в потенциальных полях, характеризующихся тем, что работа, совершаемая действующими силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положений. Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипативной; например, сила трения.
Механические системы, на тела которых действуют только консервативные силы (внутренние и внешние), называются консервативными системами. Закон сохранения механической энергии можно сформулировать еще и так: в консервативных системах полная механическая энергия сохраняется. В консервативных системах могут происходить лишь превращения кинетической энергии в потенциальную энергию и обратно в эквивалентных количествах.
В диссипативных системах механическая энергия постепенно уменьшается из-за преобразования ее в другие (немеханические) формы энергии. Этот процесс называется диссипацией, или рассеянием энергии.
В системе, в которой действуют консервативные и диссипативные силы, например силы трения, полная механическая энергия системы не сохраняется. Следовательно, для такой системы закон сохранения механической энергии не выполняется. Однако при убывании механической энергии всегда возникает эквивалентное количество энергии другого вида. Таким образом, энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой. В этом заключается физическая сущность закона сохранения и превращения энергии, сущность неуничтожения материи и ее движения, поскольку энергия – универсальная мера различных форм движения и взаимодействия.
Закон сохранения энергии – результат обобщения многих экспериментальных данных. Как мы уже говорили, идея этого закона принадлежит М.В. Ломоносову, изложившему закон сохранения материи и движения, а количественная его формулировка дана немецкими учеными Ю. Майером и Г. Гельмгольцем.
Обратимся еще к одному свойству симметрии пространства – его изотропности. Изотропность пространства означает инвариантность физических законов относительно выбора направлений осей координат системы отсчета (относительно поворота замкнутой системы в пространстве на любой угол).
Из изотропности пространства следует фундаментальный закон природы – закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т. е. не изменяется с течением времени.
Выявление различных симметрий в природе, а иногда и постулирование их стало одним из методов теоретического исследования свойств микро- , макро- и мегамира. Возросла в связи с этим роль весьма сложного и абстрактного математического аппарата – теории групп – наиболее адекватного и точного языка для описания симметрии.