Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Med_fizika-1.doc
Скачиваний:
563
Добавлен:
07.02.2015
Размер:
8.98 Mб
Скачать

§ 23. Сердце как насос

В 1628 году английский врач В. Гарвей подсчитал массу крови, выбрасываемой сердцем в артерии в течение нескольких часов. Оказалось, что она значительно превышает массу человеческого тела. Отсюда вывод: в сердце многократно поступает одна и та же кровь, то есть сердце работает как насос.

П

ри нормальной работе сердца объем желудочка меняется от 85 до 25 см3(в конце систолы).

Моделируя объем желудочка сферой, можно рассчитать, что сила, развиваемая сердцем в начале систолического выброса равна 87 Н, а в конце 66 Н (соответственно давление (9,3 кПа и 16 кПа). Это означает, что сердце развивает меньшую силу при наибольшем давлении. Время систолы tс= 0,3 с; время диастолы равно 0,7 с.

Выделим две фазы кровотока в системе «левый желудочек сердца – крупные сосуды – мелкие сосуды». Крупные сосуды рассматриваются как упругий резервуар. Это артериальная часть системы кровообращения.

Периферическая часть системы кровообращения (артериолы, капилляры) рассматривается как жесткая труба.

1-я фаза– приток крови в аорту из сердца с момента открытия аортального клапана до его закрытия. Стенки крупных сосудов растягиваются благодаря их эластичности. Часть крови резервируется в крупных сосудах, а часть проходит в мелкие сосуды (рис. 32). Ударный объем крови – объем крови, выбрасываемый желудочком сердца за одну систолу.

Рис. 32. Схематическое изображение кровотока

в крупных и микрососудах при открытом (а) и закрытом (б)

аортальном клапане

2-я фаза– это изгнание крови из крупных сосудов в мелкие после закрытия аортального клапана. Стенки крупных сосудов за счет упругости возвращаются в исходное состояние, проталкивая кровь в микрососуды. В это время в левый желудочек поступает кровь из левого предсердия.dV/dtна рисунке ‑ это скорость изменения объема сосудов.

ЛЕКЦИЯ 8

Электрография

§ 24. Физические основы электрографии

а) Диполь в равностороннем треугольнике.

Если диполь поместить в центр равностороннего треугольника, то он будет равноудален от всех его вершин. Можно показать, что в этом случае разность потенциалов между любыми двумя вершинами прямопропорциональна проекции дипольного момента на соответствующую сторону (например, UAB PeAB) (рис. 33).

С

Рис. 33.

ледовательно, можно записать:

PеAC :PеAB:PеBC=UAC:UAB:UBC

Сопоставляя величины проекций, можно судить о величине самого вектора Pеи его расположении внутри треугольника.

б) Токовый диполь.

В вакууме или в идеальном диэлектрике электрический диполь может сохраняться сколь угодно долго. Но в проводящей среде под действием электрического поля диполя возникает движение свободных зарядов и диполь экранируется.

Для сохранения диполя в проводящей среде можно использовать источник тока (). Роль полюсов диполя будут играть заряды, индуцированные источником на электродах. В этом случае возникает электрический токI, который будет препятствовать эффекту экранирования диполя. Если сопротивление средыR, то:;

–внутреннее сопротивление источника.

Ток движется от положительного к отрицательному электроду. Эти электроды называют истоком тока и стоком тока соответственно. Токовый диполь: в сосуд с электролитом опустили элемент питания. Двухполюсная система в проводящей среде, состоящая из истока и стока тока, называется дипольным электрическим генератором или токовым диполем. Характеристикой токового диполя является дипольный момент:

,

где l– расстояние между истоком и стоком.

Аналогия между Pe иPT:

– при одинаковой форме электродов линии тока совпадают с линиями напряженности электростатического поля;

– формулы, характеризующие электрическое поле токового ди- поля, похожи на формулы, характеризующие поле обычного диполя.

Теория токового диполя применяется для модельного объяснения возникновения потенциалов, регистрируемых при снятии электрограмм.

в) Виды электрографии.

Живые ткани являются источником электрических потенциалов. Регистрация биопотенциалов называется электрографией.

Существуют следующие диагностические методы.

ЭКГ – электрокардиография– регистрация биопотенциалов, возникающих в сердечной мышце при ее возбуждении.

ЭРГ – электроретинография– регистрация биопотенциалов сетчатки глаза, возникающих в результате воздействия на глаз.

ЭЭГ – электроэнцефалография– регистрация биоэлектрической активности головного мозга.

ЭМГ – электромиография– регистрация биоэлектрической активности мышц.

При изучении электрограмм решаются 2 задачи:

– прямая ‑ выяснение механизма возникновения электрограммы или расчет потенциала в области измерения по заданным характеристикам электрической модели органа;

– обратная ‑ выявление состояния органа по характеру его электрограммы.

Практически во всех существующих моделях электрическую активность органов и тканей сводят к действию токовых электрических генераторов, находящихся в электропроводящей среде.

ЛЕКЦИЯ 9

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]