Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
EM-praktikum_2006.doc
Скачиваний:
61
Добавлен:
07.02.2015
Размер:
1.25 Mб
Скачать

Лабораторная работа № 4 Измерение сопротивления проводников

Цель работы: ознакомление с методами измерений электрических сопротивлений.

Приборы и принадлежности: выпрямитель УНИП-7А, вольтметр АМВ на 75 В, миллиамперметр Д566 на 50 – 100 мА, магазин сопротивлений Р-33, реохорд, гальванометр М265М, катушка, двойной ключ, авометр АВО-63.

Литература: [1], § 2.1, 2.2, 2.4; [2], § 14-18; [3], § 5.2-5.4; [4], § 59, 64-66; [5], § 31, 34-36; [6], § 41-48; [7], § 96-98, 101.

Введение

Известно, что измерить сопротивление R некоторого элемента электрической цепи можно с помощью амперметра и вольтметра, используя электрическую цепь, показанную, например, на рис. 1.

Рис. 1 Рис. 2

Если показания амперметра равны I, а вольтметра U, то сопротивление исследуемого участка цепи можно оценить по формуле Эта оценка будет близка к истине, если сопротивление вольтметра является бесконечно большим; в таком случае регистрируемый амперметром ток не ответвляется на вольтметр. В реальных условиях это не выполняется. Можно построить другую схему, в которой показания амперметра соответствуют току, текущему через исследуемый элемент цепи (рис. 2). Однако в этом случае показания вольтметра не соответствуют напряжению на резисторе, поскольку любой амперметр обладает конечным сопротивлением и часть измеренного напряжения приходится на него. Таким образом, при использовании рассматриваемого метода необходимо учитывать значения внутренних сопротивлений электроизмерительных приборов (они, как правило, указаны на шкалах приборов) и вводить соответствующие поправки в результаты измерений силы тока и напряжения на исследуемом участке цепи.

Более точные результаты измерений сопротивления дает метод сравнения, основанный на использовании так называемого мостика Уитстона. Мост Уитстона состоит из реохорда АС, гальванометра G и двух резисторов: с известным сопротивлением R0 и неизвестным R (рис. 3).

Рис. 3

Реохорд – однородная и калиброванная проволока, вдоль которой может перемещаться скользящий контакт D. Контакт D делит сопротивление реохорда на части r1 и r2.

Легко видеть, что потенциалы в точках B и D имеют промежуточное значение между потенциалами точек А и C. Перемещая контакт D, можно найти такую точку на реохорде, потенциал которой равен потенциалу точки B. В этом случае ток через гальванометр протекать не будет. Говорят, что мост в этом случае сбалансирован, или уравновешен. В сбалансированном мостике ток в точках B и D не разветвляется, и, следовательно, в ветвях AB и BC сила тока будет одинаковой. Обозначим ее I1. Одинаковыми будут и токи, протекающие в ветвях AD и DC (I2 ).

Запишем второе правило Кирхгофа для контура АBDА, учитывая, что ЭДС в этом контуре отсутствует:

(1)

Аналогичное уравнение для контура BCDB имеет вид

(2)

Эти уравнения можно переписать так:

и (3)

Разделим левые и правые части уравнений (3) друг на друга:

(4)

Отсюда . Примем далее во внимание, что сопротивления участков реохорда пропорциональны их длинам:С учетом этого окончательно получим:

(5)

Здесь l1 и l2 – длины участков реохорда AD и DC соответственно.

Таким образом, добившись баланса моста и измерив l1 и l2, можно по формуле (5) определить неизвестное сопротивление R. Можно показать, что ошибка измерения сопротивления будет наименьшей, если при балансировке моста движок стоит на середине реохорда.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]