Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика.docx
Скачиваний:
178
Добавлен:
07.02.2015
Размер:
1.8 Mб
Скачать

8.Второй закон термодинамики

Не все физические процессы, допускаемые нашим воображением, могут осуществляться в

реальности.

Например, в течение нескольких столетий предпринимались попытки изобрести вечный двигатель первого рода — устройство, способное производить неограниченное количество механической работы само по себе, без привлечения внешних источников энергии.

Все подобные проекты, зачастую весьма хитроумные, неизменно терпели крах. В конечном счёте это привело к открытию фундаментального закона природы — закона сохранения энергии.

Любой процесс, нарушающий закон сохранения энергии, оказывается невозможным; точнее — не обнаружено ни одного процесса, в котором не выполнялся бы закон сохранения энергии.

В термодинамике закон сохранения энергии принял форму первого закона термодинамики.

Тепловые машины

Коротко говоря, тепловые машины преобразуют теплоту в работу или, наоборот, работу в теплоту.

Тепловые машины бывают двух видов — в зависимости от направления протекающих в них процессов.

1. Тепловые двигатели преобразуют теплоту, поступающую от внешнего источника, в механическую работу.

2. Холодильные машины передают тепло от менее нагретого тела к более нагретому за счёт механической работы внешнего источника

9.Третий закон термодинамики (теорема Нернста)

Значение аддитивной константы, возникающей при определении энтропии, устанавливается теоремой Нернста, которую часто называют третьим законом термодинамики: энтропия любой системы при абсолютном нуле температуры всегда может быть принята равной нулю.

Физический смысл теоремы состоит в том, что при T = 0 все возможные состояния системы имеют одинаковую энтропию. Поэтому состояние системы при T = 0 удобно взять в качестве начального состояния О и положить энтропию этого состояния равной нулю. Тогда энтропию произвольного состояния A можно определить интегралом

(63)

где интегрирование производится вдоль обратимого процесса, начинающегося от состояния при T = 0 и заканчивающегося состоянием A.

В термодинамике теорема Нернста принимается как постулат. Доказывается она методами квантовой статистики.

Из теоремы Нернста следует важный вывод о поведении теплоемкости тел при T→ 0. Рассмотрим нагревание твердого тела. При изменении его температуры T на dT тело поглощает количество теплоты

δ Q = C(TdT ,

(64)

где C(T) - его теплоемкость. Поэтому согласно определению (63) энтропию тела при температуре T можно представить в форме

(65)

Из этой формулы видно, что если бы теплоемкость тела при абсолютном нуле, C(0), отличалась от нуля, то интеграл (65) расходился бы на нижнем пределе. Поэтому при T = 0 теплоемкость должна равняться нулю:

C(0) = 0 .

(66)

Этот вывод находится в согласии с экспериментальными данными по теплоемкости тел при T→ 0 .

Следет отметить, что (66) относится не только к твердым телам, но и к газам. Сделанное ранее утверждение о том, что теплоемкость идеального газа не зависит от температуры, справедливо только для не слишком низких температур. При этом нужно иметь в виду два обстоятельства.

1. При низких температурах свойства любого газа сильно отличаются от свойств идеального газа, т.е. вблизи абсолютного нуля ни одно вещество не является идеальным газом.

2. Если бы даже идеальный газ мог существовать вблизи нуля температуры, то строгое вычисление его теплоемкости методами квантовой статистики показывает, что она стремилась бы к нулю при T→ 0 .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]