Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ИТЗИ_lab2.doc
Скачиваний:
48
Добавлен:
07.02.2015
Размер:
965.12 Кб
Скачать

1.8 Сигналы и их спектры

Особенности допплеровских измерений спектра скоростей движения биологических структур довольно трудны для понимания. Вот почему в этом разделе даются некоторые начальные сведения о характеристиках сигналов, использующихся для допплеровских измерений. Эти сведения известны инженерам, участвующим в разработке, производстве и эксплуатации ультразвуковых приборов.

На рис. 23 (слева) представлены основные виды сигналов, используемых в ультразвуковых диагностических системах.

Рис. 23. Вид сигналов, используемых в ультразвуковой диагностике (слева), и соответствующих им амплитудно-частотных спектров (справа). Сигналы и их спектры связаны между собой преобразованием Фурье, а — В-режим, б — CW-режим, в — PW-режим — одиночный импульс, г — PW-режим — пачка из N импульсов.

Эти сигналы излучаются датчиками, а получаемые в результате отражения в тканях эхо-сигналы принимаются теми же датчиками и далее усиливаются и преобразуются в системе. Каждый из сигналов может быть представлен в виде суммы синусоидальных (гармонических) колебаний с различными частотами, амплитудами и фазами. Такое представление называется спектром сигнала. Спектр характеризует распределение интенсивности сигнала по частотам, т.е. определяет, какие частотные составляющие представлены больше или меньше в сигнале. Спектр — очень важная характеристика сигнала и связана с временным видом сигнала взаимно-однозначной зависимостью. Если известен вид сигнала, то спектр сигнала может быть вычислен с помощью так называемого преобразования Фурье. И наоборот — зная амплитудно-фазовый спектр, можно определить вид сигнала на оси времени путем вычисления обратного преобразования Фурье. Естественно, принимаемые эхо-сигналы также характеризуются спектром, который может быть вычислен с помощью преобразования Фурье. В допплеровских ультразвуковых системах, предназначенных для оценки спектра скоростей, принятые эхо-сигналы подвергаются обработке в специальных процессорах, вычисляющих преобразование Фурье, т.е. оценивающих спектр эхо-сигналов. Для ускорения вычислений применяется специальный алгоритм — быстрое преобразование Фурье (БПФ, или FFT — fast fourier transform).

Рассмотрим импульсный сигнал, используемый для получения двухмерного серошкального изображения в В-режиме (рис. 23.а). Длительность этого сигнала τи очень мала, что обусловлено стремлением получить хорошее продольное разрешение. Амплитудный спектр G(f) этого сигнала, напротив, очень широкий. Вообще для сигналов простой формы существует четкая связь между длительностью сигнала τи и шириной его спектра Δf: чем короче импульс, тем шире его спектр, и наоборот, чем длиннее сигнал, тем уже спектр. Ширина спектра (по уровню 0,5 от максимума спектра GM) приближенно равна Δf = 1/τи

В реально используемых датчиках сигналы в В-режиме имеют ширину спектра Δf не менее 40÷50% от центральной частоты f0. Например, при работе с датчиком 3,5 МГц (f0 = 3,5 МГц), ширина спектра — не менее 1,4 МГц. Длительность сигнала τи при этом не более 0,7 мкс. В современных системах все чаще используются сигналы с еще более широким спектром частот, что обеспечивает высокую разрешающую способность.

В допплеровских системах с CW-режимом используется очень длинный синусоидальный сигнал на одной частоте f0 (рис. 23.б). Спектр этого сигнала чрезвычайно узкий и сосредоточен в очень малой области частот около f0. Например, если длительность сигнала 10 мс, то ширина спектра сигнала Δf = 100 Гц. Таким образом, в CW-режиме применяются сигналы с существенно меньшей шириной спектра, чем в В-режиме. Это имеет решающее значение для точности измерения допплеровского спектра частот.

Основным недостатком режима непрерывно-волнового допплера, как уже говорилось, является отсутствие разрешающей способности по глубине. Поэтому в режиме PW — альтернативном методе оценки допплеровского спектра, применяются импульсные сигналы, длительность которых существенно меньше, чем в режиме CW, но несколько больше, чем в режиме В (рис. 23.в). Ширина спектра такого одиночного импульса хоть и меньше, чем в режиме В, но слишком велика, чтобы обеспечить измерение спектра частот допплеровского сдвига с таким же качеством, как в режиме CW. Поэтому в режиме PW применяется пачка импульсов, спектр которой имеет специфический вид, называемый "гребенчатой функцией" (рис. 23.г). Вместо одного явно выраженного максимума спектр пачечного сигнала имеет много пиков. Ширина каждого из узких пиков одна и та же и определяется длительностью пачки из N импульсов: Δf = 1/(NT) .

Если длительность пачки равна длительности сигнала в режиме CW, то ширина каждого пика спектра пачечного сигнала в этом случае равна ширине единственного пика спектра сигнала CW. Расстояние F между отдельными пиками на оси частот равно частоте повторения импульсов (PRF).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]