Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Funktsii_mnogikh_peremennykh_2012.doc
Скачиваний:
159
Добавлен:
07.02.2015
Размер:
515.58 Кб
Скачать

Формула Тейлора для функции нескольких переменных

Как известно, функцию F(t) при условии существования ее производных по порядок n+1 можно разложить по формуле Тейлора с остаточным членом в форме Лагранжа (см. формулы (21.7), (21.11) первой части курса). Запишем эту формулу в дифференциальной форме:

(4.3)

где

В этой форме формулу Тейлора можно распространить на случай функции нескольких переменных.

Рассмотрим функцию двух переменных f(x, y), имеющую в окрестности точки (х0 , у0) непрерывные производные по (n + 1)-й порядок включительно. Зададим аргументам х и у некоторые приращения Δх и Δу и рассмотрим новую независимую переменную t:

(0 ≤ t1). Эти формулы задают прямолинейный отрезок, соединяющий точки (х0 , у0) и (х0 + Δх, у0 + Δу). Тогда вместо приращения Δf (x0 ,y0) можно рассматривать приращение вспомогательной функции

F(t) = f (x0 + t Δx, y0 + tΔy) , (4.4)

равное ΔF (0) = F (1) – F (0). Но F (t) является функцией одной переменной t, следовательно, к ней применима формула (4.3). Получаем:

.

Отметим, что при линейной замене переменных дифференциалы высших порядков обладают свойством инвариантности, то есть

Подставив эти выражения в (4.3), получим формулу Тейлора для функции двух переменных:

, (4.5)

где 0<θ<1.

Замечание. В дифференциальной форме формула Тейлора для случая нескольких переменных выглядит достаточно просто, однако в развернутом виде она весьма громоздка. Например, даже для функции двух переменных первые ее члена выглядят так:

Производная по направлению. Градиент.

Пусть функция u = f (x, y, z) непрерывна в некоторой области D и имеет в этой области непрерывные частные производные. Выберем в рассматриваемой области точку M(x,y,z) и проведем из нее вектор S, направляющие косинусы которого cosα, cosβ, cosγ. На векторе S на расстоянии Δs от его начала найдем точку М1(х+Δх, у+Δу, z+Δz), где

Представим полное приращение функции f в виде:

где

После деления на Δs получаем:

.

Поскольку предыдущее равенство можно переписать в виде:

(4.6)

Определение 4.3. Предел отношения приназываетсяпроизводной от функции u = f (x, y, z) по направлению вектора S и обозначается .

При этом из (4.6) получаем:

(4.7)

Замечание 1. Частные производные являются частным случаем производной по направлению. Например, при получаем:

.

Замечание 2. Выше определялся геометрический смысл частных производных функции двух переменных как угловых коэффициентов касательных к линиям пересечения поверхности, являющейся графиком функции, с плоскостями х = х0 и у = у0. Аналогичным образом можно рассматривать производную этой функции по направлению l в точке М(х0 , у0) как угловой коэффициент линии пересечения данной поверхности и плоскости, проходящей через точку М параллельно оси Oz и прямой l.

Определение 4.4. Вектор, координатами которого в каждой точке некоторой области являются частные производные функции u = f (x, y, z) в этой точке, называется градиентом функции u = f (x, y, z).

Обозначение: grad u = .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]