Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fizika (1).docx
Скачиваний:
26
Добавлен:
06.02.2015
Размер:
879.37 Кб
Скачать

В физиологии термином «электрический импульс» (или «электрический сигнал») обозначают именно видеоимпульсы. По Дисперсия импеданса биологических тканей.

Электрический импеданс состоит из реактивной и активной составляющей: Z = R + Xc

Рис. 1.5. Дисперсия импеданса скелетной мышцы

Между зависимостями Z(f) и e(f) имеется связь, но это не идентичные процессы. Например, крутые и пологие участки Z(f) и e(f) обычно совпадают. Принято считать, что дисперсия импеданса (рис. 1.5) отражает более широкий круг электромагнитных процессов в биоткани и более выражено зависит от процессов жизнедеятельности (на этот счёт имеются обширные экспериментальные данные). По зависимости импеданса Z от частоты можно судить об уровне обмена веществ. Также имеется возможность оценить степень жизнеспособности органов и тканей. 

вторяющиеся импульсы называют импульсным током.

Билет30

атомные спектры

Всякий спектр представляет собой развертку, разложение излучения на его компоненты. Для получения спектра используется специальный прибор-спектрометр. На рис. 1.8 схематически изображен полный спектр электромагнитного излучения. Обратим внимание на то, что видимый свет составляет только небольшую часть всего спектра электромагнитного излучения. Видимый свет может служить примером непрерывного излучения. В непрерывном излучении содержится излучение со всеми длинами волн в пределах некоторого диапазона. Его спектр называется непрерывным (сплошым) спектром. Примером спектра такого типа является известное всем природное явление-радуга.

Когда пучок непрерывного излучения, например белый свет, пропускают через газообразный образец какого-либо элемента, в прошедшем через образец пучке света недостает излучения с определенными длинами волн. Спектр этого, поглощенного образцом, излучения называется атомным спектром поглощения. Длины волн излучения, поглощенного атомами образца, обнаруживаются по темным линиям на фоне непрерывного спектра.

Если элементы в их газообразном состоянии нагревать до высоких температур или пропускать через них электрический разряд, они испускают излучение с определенными длинами волн. Спектр такого излучения называется атомным спектром испускания или атомным эмиссионным спектром (рис. 1.9).

При изучении излучения ученым удалось установить общие закономерности в характере спектров и найти ряд эмпирических законов, которым они подчиняются. Было установлено, что спектральные линии всех элементов можно разбить на ряд серий.

В 1885 году Бальмеру удалось найти формулу, описывающую распределение спектральных линий видимого спектра водорода:

 

Спектральные серии водорода

Переход на квантовый уровень n1

Область спектра

Серия Лаймана

1

ультрафиолетовый

Серия Бальмера

2

видимый свет

Серия Пашена

3

инфракрасный

Серия Брэккета

4

далёкий инфракрасный

Серия Пфунда

5

---

Серия Хэмпфри

6

---

Аналогичные серии наблюдаются в спектрах водородоподобных ионов (например, He+, Li2+). С увеличением числа электронов атомные спектры усложняются и закономерности в расположении линий становятся менее выраженными

Билет32Лазеры – это источники когерентного света, в работе которых использовано явление индуцированного излучения.  

Атом, находящийся в возбуждённом состоянии может самопроизвольно (спонтанно) перейти в состояние с меньшей энергией, излучив при этом квант света. Поэтому такое спонтанное излучение света соседними атомами является некогерентным. Некогерентный свет излучают атомы нагретых тел, например, спирали лампы накаливания. Свет, излучаемый газонаполненными лампами дневного света, тоже является некогерентным, так как в этом случае фотоны испускаются не одновременно, а при случайных столкновениях электронов, ионов и атомов, происходящих во время электрического разряда.  

условия, необходимые для создания источника когерентного света:

  • нужно рабочее вещество с инверсной населенностью. Только тогда можно получить усиление света за счет вынужденных переходов;

  • рабочее вещество следует поместить между зеркалами, которые осуществляют обратную связь;

  • усиление, даваемое рабочим веществом, а значит, число возбужденных атомов или молекул в рабочем веществе должно быть больше порогового значения, зависящего от коэффициента отражения выходного зеркала.

Хирургические лазерные системы обеспечивают:

• эффективную контактную и бесконтактную вапоризацию и деструкцию биоткани;

• сухое операционное поле;

• минимальное повреждение окружающих тканей;

• эффективный гемо- и аэростаз;

• купирование лимфатических протоков;

• высокую стерильность и абластичность;

• совместимость с эндоскопическими и лапароскопическими инструментам

ЛАЗЕРЫ В КОСМЕТОЛОГИИ

ЭПИЛЯЦИЯ

ЛЕЧЕНИЕ СОСУДИСТЫХ И ПИГМЕНТНЫХ ДЕФЕКТОВ КОЖИ

ШЛИФОВКА И ПОЛИРОВКА КОЖИ

УДАЛЕНИЕ ТАТУИРОВОК И ПИГМЕНТНЫХ ПЯТЕН

• Газовые лазеры. Эта категория включает и чрезвычайно распространенные гелий-неоновые лазеры, дающие очень знакомый красный луч. Накачивают их при помощи радиоволн или электричества. Гелий-неоновые лазеры обладают небольшой мощностью. А вот газовые лазеры на углекислом газе можно использовать при подрывных работах, для резки и плавки металлов в тяжелой промышленности; они способны давать чрезвычайно мощный и совершенно невидимый луч; • Химические лазеры. Эти мощные лазеры заря жаются от химической реакции — к примеру, горения этилена и трифторида азота NF3. Такие лазеры достаточно мощны, чтобы найти применение в военной области. В США химический принцип накачки применяется в воздушных и наземных боевых лазерах, способных давать луч мощностью в миллионы ватт и предназначенных для сбивания в полете ракет малой дальности. • Эксимерные лазеры. Эти лазеры получают энергию также от химической реакции, в которой обычно задействованы инертный газ (т.е. аргон, криптон или ксенон) и какой-нибудь фторид или хлорид. Они дают ультрафиолетовый свет и могут использоваться в элек тронной промышленности для вытравливания кро хотных транзисторов на полупроводниковых чипах, а также в хирургии глаза для проведения тончайших операций по технологии Lasik. • Полупроводниковые лазеры. Диоды, которые мы так широко используем во всевозможных электрон ных устройствах, могут давать мощные лазерные лучи, которые используются в промышленности для резки и сварки. Эти же полупроводниковые лазеры работа ют и в кассовых аппаратах, считывая штрихкоды с выбранных вами товаров.  • Лазеры на красителях. В этих лазерах в качестве рабочего тела используются органические красите ли. Они исключительно полезны в получении ультра коротких импульсов света, которые часто имеют длительность порядка одной триллионной доли секунды.

Билет28

Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Как показывает опыт, свет при определенных условиях может заходить в область геометрической тени. Если на пути параллельного светового пучка расположено круглое препятствие (круглый диск, шарик или круглое отверстие в непрозрачном экране), то на экране, расположенном на достаточно большом расстоянии от препятствия, появляется дифракционная картина – система чередующихся светлых и темных колец. Если препятствие имеет линейный характер (щель, нить, край экрана), то на экране возникает система параллельных дифракционных полос.

Принцип Гюйгенса — Френеля: волновая поверх­ность в любой момент времени представляет собой не просто огибающую вторичных волн, а результат их интерференции.

Для того чтобы найти амплитуду световой волны от точечного моно­хроматического источника света А в произвольной точке О изо­тропной среды, надо источник света окружить сферой радиусом r=ct. Интерференция волны от вторичных источников, располо­женных на этой поверхности, определяет амплитуду в рассмат­риваемой точке О, т. е. необходимо произвести сложение коге­рентных колебаний от всех вторичных источников на волновой поверхности. Так как расстояния от них до точки О различны, то колебания будут приходить в различных фазах. Наименьшее расстояние от точки О до волновой поверхности В равно r0. Первая зона Френеля ограничивается точками волновой поверхности, рассто­яния от которых до точки О равны: , гдеλ — длина световой волны. Вторая зона .

Аналогично определяются границы других зон. Если разность хода  от двух соседних зон равна половине длины волны, то коле­бания от них приходят в точку О в противоположных фазах и на­блюдается интерференционный минимум, если разность хода равна длине волны, то наблю­дается интерференционный максимум.

Таким образом, если на препятствии укладывается целое число длин волн, то они гасят друг друга и в данной точке наблюдается минимум (темное пятно). Если нечетное число полуволн, то наблюдается максимум (светлое пятно).

Расчеты позволили понять, каким образом свет от точечного источника, испускающего сферические волны, достигает про­извольной точки О пространства.

Дифракционная решетка - система препятствий (параллельных штрихов), сравнимых по размерам с длиной волны.

Величина d = a + b называется постоянной (периодом) дифракционной решетки, где а  ширина щели; b — ширина непрозрачной части. Угол φ - угол отклонения световых волн вследствие дифракции.

Для рассмотрения всех лучей спектра, обратимся к спектру, играющему в учении о свете первенствующую роль, а именно – к «дифракционному» спектру. Он получается при прохождении света сквозь большое число малых отверстий и щелей.  Спектр подобного рода мы видим прищурившись сквозь ресницы на какой-либо яркий источник света, например спираль лампы накаливания или на солнце. Радужные круги вокруг луны в морозные ночи – это также дифракционные спектры, полученные от прохождения лучей света через бесчисленное множество мельчайших промежутков между носящимися в воздухе частицами замерзших паров. В совершенном же виде дифракционные спектры получаются при пропускании света сквозь дифракционные решетки или при отражении от них. 

Рентгеноструктурный анализ — дифракционный метод исследования структуры вещества. В основе данного метода лежит явление дифракции рентгеновских лучей на трехмерной кристаллической решетке. Метод позволяет определять атомную структуру вещества, включающую в себя пространственную группу элементарной ячейки, ее размеры и форму, а также определить группу симметрии кристалла.

Голография – метод записи и восстановления изображения, основанный на интерференции и дифракции волн.Голография позволяет фиксировать и воспроизводить более полные сведения об объекте с учетом амплитуд и фаз волн, рассеянных предметом. Регистрация фазы возможна вследствие интерференции волн. С этой целью на светофиксирующую поверхность посылают две когерентные волны: опорную, идущую непосредственно от источника света или зеркал, которые используются как вспомогательные устройства, и сигнальную, которая появляется при рассеянии (отражении) части опорной волны предметом и содержит соответствующую информацию о нем. Интерференционную картину, образованную сложением сигнальной и опорной волн и зафиксированную на светочувствительной пластинке, называют голограммой. Для восстановления изображения голограмму освещают той же опорной волной.

При восстановлении изображении можно изменить длину опорной волны. Так, например, голограмму, образованную невидимыми электромагнитными волнами (ультрафиолетовыми, инфракрасными и т.п.), можно восстановить видимым светом.

В медицине голографию применяют как метод интроскопии или внутривидения, основанный на зависимости условий отражения и поглощения электромагнитных волн телами, в частности, от длины волны.

Еще одно приложение голографии в медицине связано с голографическим микроскопом. Его устройство основано на том, что изображение предмета получается увеличенным, если голограмму, записанную с плоской опорной волной, осветить расходящейся сферической волной.

Билет13

Звук, как и свет, является источником информации, и в этом его главное значение. Звуки природы, речь окружающих нас людей, шум работающих машин многое сообщают нам. Чтобы представить значение звука для человека, достаточно временно лишить себя возможности воспринимать звук – закрыть уши. Естественно, что звук может быть и источником информации о состоянии внутренних органов человека.

Распространенный звуковой метод диагностики заболеваний – аускультация (выслушивание). Для ау-скультации используют стетоскоп или фонендоскоп. Фонендоскоп состоит из полой капсулы с передающей звук мембраной, прикладываемой к телу больного, от нее идут резиновые трубки к уху врача. В полой капсуле возникает резонанс столба воздуха, вследствие чего усиливается звучание и улучшается ау-скультация. При аускультации легких выслушивают дыхательные шумы, разные хрипы, характерные для заболеваний. По изменению тонов сердца и появлению шумов можно судить о состоянии сердечной деятельности. Используя аускультацию, можно установить наличие перистальтики желудка и кишечника, прослушать сердцебиение плода.

Для одновременного выслушивания больного несколькими исследователями с учебной целью или при консилиуме используют систему, в которую входят микрофон, усилитель и громкоговоритель или несколько телефонов.

Длядиагностики состояния сердечной деятельности применяется метод, подобный аускультации и называемый фонокардиографией (ФКГ). Этот метод заклю16б чается в графической регистрации тонов и шумов сердца и их диагностической интерпретации. Запись фонокардиограммы производят с помощью фонокардиографа, состоящего из микрофона, усилителя, системы частотных фильтров и регистрирующего устройства.

Принципиально отличным от двух изложенных выше звуковых методов является перкуссия. При этом методе выслушивают звучание отдельных частей тела при их простукивании. Схематично тело человека можно представить как совокупность газонаполненных (легких), жидких (внутренние органы) и твердых (кость) объемов. При ударе по поверхности тела возникают колебания, частоты которых имеют широкий диапазон. Из этого диапазона одни колебания погаснут довольно быстро, другие же, совпадающие с собственными колебаниями пустот, усилятся и вследствие резонанса будут слышимы. Опытный врач по тону перкуторных звуков определяет состояние и расположение (тонографию) внутренних органов.

УЛЬТРАЗВУ́К-звуковые колебания высокой частоты, не воспринимаемые человеческим ухом.

УЗ излучатель - это генератор мощных ультразвуковых волн. Как мы знаем, ультразвуковую частоту человек не слышит, но организм чувствует. Иными словами ультразвуковая частота воспринимается человеческим ухом, но определенный участок мозга, отвечающий за слух, не может расшифровать данные звуковые волны. Те, кто занимаются построением аудио систем должны знать, что высокая частота очень неприятна для нашего слуха, но если поднять частоту на еще высокий уровень (УЗ диапазон) то звук исчезнет, но на самом деле он есть. Мозг попытается безуспешно раскодировать звук, в следствии этого возникнет головная боль, тошнота, рвота, головокружение и т.п.

Реакция клетки на ультразвук не ограничивается изменениями только в ее поверхностных структурах, В клетках, помещенных в ульт­развуковое поле, возникают энергичные микропотоки, перемешиваю­щие ее содержимое, меняющие взаиморасположение клеточных органелл. Источниками таких микропотоков может оказаться пульсирую­щий газовый пузырек, если расстояние между ним и клеткой не превышает 5 • 10-2 см.

По всей вероятности, ультразвук оказывает влияние не только на жизнедеятельность клетки в целом, но и на структуру и функции от­дельных клеточных органелл.

Под влиянием ультразвука (0,2 Вт/см2; 0,88 МГц) меняются усло­вия транспорта ионов через мембрану митохондрий, наблюдается ра­зобщение свободного дыхания и фосфорилирующего окисления в них. Степень разобщения возрастает при увеличении интенсивности ультразвука от 0,05 до 1,2 Вт/см2, достигая максимума при 1 Вт/см2 (0,88 МГц; 5 мин). При 2,5 Вт/см2 (1 МГц; 5 мин) возникают наруше­ния в мембранах лизосом, что можно наблюдать на типичной картине лизиса клеток печени крыс. Аналогичный эффект наблюдается и под действием низкочастотного (20 кГц) ультразвука.

В определенных условиях ультразвук (2 Вт/см2; 0,75 МГц) может вызвать разрушение ядер в клетках Не La, не нарушая при этом целост­ности цитоплазматических мембран. Такие специфические нарушения не могут быть обусловлены кавитацией и микропотоками и предположительно объясняются возникновением резонансных волн на поверхно­сти ядерных мембран. Кроме того, ультразвук (0.5...3 Вт/см2; 0,8...2 МГц; 2... 10 мин) вызывает изменение числа гранул гликогена в клетках, нару­шение целостности эндоплазматического ретикулума, увеличение коли­чества лизосом, изменение структуры митохондрий в клетках и т. д.

Несмотря на кажущуюся простоту ситуации, в настоящее время оказывается весьма непросто выделить первичные явления в клетке, вызванные физико-химическими процессами в ультразвуковом поле.

Действительно, количество гликогена в клетке, число и активность лизосом, форма саркоплазматической сети меняются в широких пределах в процессе жизнедеятельности. Поэтому наблюдаемые под действием ультразвука изменения могут свидетельствовать только о биологической реакции клетки на внешнее неспецифическое воздей­ствие. Если ультразвуковое воздействие оказалось не летальным для клетки, то возникшие в ней изменения репарируются в течение при­мерно 100 ч. Лишь митохондриям необходимо значительно больше времени для восстановления своей структуры и функции.

Применение ультразвука в терапии и хирургии

Ультразвук, применяемый в медицине, может быть условно разделен на ультразвук низких и высоких интенсивностей. Основная задача применения ультразвука низких интенсивностей (0,125 - 3,0 Вт/см2) - неповреждающий нагрев или какие-либо нетепловые эффекты, а также стимуляция и ускорение нормальных физиологических реакций при лечении повреждений. При более высоких интенсивностях (> 5 Вт/см2) основная цель - вызвать управляемое избирательное разрушение в тканях. Первое направление включает в себя большинство применений ультразвука в физиотерапии и некоторые виды терапии рака, второе - ультразвуковую хирургию.

Применение ультразвука в хирургии.

Существуют две основные области применения ультразвука в хирургии. В первой из них используется способность сильно фокусированного пучка ультразвука вызывать локальные разрушения в тканях, а во второй механические колебания ультразвуковой частоты накладываются на хирургические инструменты типа лезвий, пил, механических наконечников.

Хирургия с помощью фокусированного ультразвука.

Хирургическая техника должна обеспечивать управляемость разрушения тканей, воздействовать только на четко ограниченную область, быть быстродействующей, вызывать минимальные потери крови. Мощный фокусированный ультразвук обладает большинством из этих качеств. Возможность использования фокусированного ультразвука для создания зон поражения в глубине органа без разрушения вышележащих тканей изучено в основном в операциях на мозге. Позже операции проводились на печени, спинном мозге, почках и глазе

Билет10

МЕХАНИЧЕСКИЕ ВОЛНЫ

Волна- это колебания, распространяющиеся в пространстве в течениие времени. Механические волны могут распространяться только в какой- нибудь среде (веществе): в газе, в жидкости, в твердом теле. В вакууме механическая волна возникнуть не может. Источником волн являются колеблющиеся тела, которые создают в окружающем пространстве деформацию среды.

Для возникновения волны нужна деформация (наличие Fупр) среды. Для распространения волны нужна упругая среда. Бегущая волна - волна, где происходит перенос энергии без переноса вещества. Бегущая упругая волна- волна, где есть перенос энергии и возникает F упругости в среде распространения. Среди механических волн мы будем рассматривать бегущие упругие волны.

___ Механические волны делятся на: а) продольные

 колебания среды происходят вдоль направления распространения волн, при этом возникают области сжатия и разрежения среды.

- возникают в любой среде (жидкости, в газах, в тв. телах).

б) поперечные

-колебания среды происходят перпендикулярно направлению их распространения, при этом происходит сдвиг слоев среды. - возникают только в твердых телах.

Уравнение бегущей волны:

Уравнение плоской волны:

Плоская волна – волна, волновые поверхности которой имеют вид плоскостей, параллельных друг другу.

Уравнение сферической волны:Сферическая волна – волна, волновые поверхности которой имеют вид концентрических сфер.

Геометрическое место точек, колеблющихся в одной фазе, называется волновой поверхностью. Волновая поверхность, отделяющая часть пространства, в которой колебания происходят, от той части, где еще нет колебаний, называется фронтом волны. Именно фронт волны перемещается со скоростью равной фазовой скорости волны. В случае одномерной синусоидальной волны уравнение волновой поверхности имеет следующий вид:

Волновое число:

Волновое уравнение:

Волново́й фронт — это поверхность, до которой дошли колебания к данному моменту времени. Волновой фронт является частным случаем волновой поверхности.

Длина́ волны́ — расстояние между двумя ближайшими друг к другу точками в пространстве, в которых колебанияпроисходят в одинаковой фазе

Фазовая скорость – это скорость распространения фазы волны.

Дисперсия волн - зависимость скорости распространения волн от частоты (или длины волны). Скорость распространения электромагнитных волн в какой-либо среде и в вакууме различны вследствие присутствия в среде электрических зарядов. Под действием электрического поля электромагнитной волны электроны совершают вынужденные колебания. Их частота совпадает с частотой приходящей волны, а амплитуда и фаза зависят от соотношения между этой частотой и собственными частотами колебаний электронов среды. Пока частота приходящей волны не слишком близка к частоте собственных колебаний электронов среды, характер дисперсии волн всегда таков, что фазовая скорость уменьшается с увеличением частоты. Эта зависимость фазовой скорости от частоты волн называется нормальной дисперсией волн. Когда частота волны приближается к собственной частоте колебаний электронов среды (т.е. вблизи резонанса), картина усложняется. Амплитуда и фаза вынужденных колебаний резко изменяются при изменении частоты волны, и фазовая скорость растет с увеличением частоты. Подобная зависимость фазовой скорости от частоты называется аномальной дисперсией волн.

Явление дисперсии волн играет большую роль при распространении радиоволн в ионосфере.

СИНУСОИДАЛЬНАЯ ВОЛНА — Форма волны, характеризующаяся регулярными колебаниями с таким набором периода и амплитуды, что смещение амплитуды на каждый пункт пропорционально синусу угла смещения

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]