Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Електродинаміка.docx
Скачиваний:
142
Добавлен:
02.02.2015
Размер:
800.78 Кб
Скачать

2.Електричне коло. Джерела і споживачі електричного струму.

З'єднані провідниками джерелоструму, споживач електричної енергії, замикальний (розмикальний) пристрій утворюють найпростіше електричне коло. Креслення, на якому умовними позначеннями показано, з яких елементів складається електричне коло і в який спосіб ці елементи з'єднані між собою, називають електричною схемою.

Напрямком струму в колі умовно вважають напрямок, у якому б рухалися по колу позитивно заряджені частинки, тобто напрямок від позитивного полюса джерела струму до негативного.

3.Закон Ома для ділянки кола. Спад напруги.

Німецький фізик Георг Ом 1827 року експериментально встановив залежність сили струму I від напруги U і електричного опору R частини кола.

Це називають законом Ома для ділянки кола: сила струму I прямо пропорційна напрузі U і обернено пропорційна електричному опору R однорідної ділянки кола:

Графічну залежність сили струму від напруги називають вольт-амперною характеристикою. Відповідно до закону Ома для провідника з опором R така залежність прямолінійна. Нахил прямої залежить від опору ділянки кола (рис.)

Величину U = IR, яка дорівнює добутку сили струму в провіднику на опір цього провідника, називають спадом напруги на даному провіднику. Спад напруги чисельно дорівнює напрузі тільки в тому разі, коли в провіднику не відбувається ніяких інших перетворень електричної енергії.

4.Опір провідника.Залежність опору від довжини, площі поперечного перерізу і матеріалу провідника. Залежність питомого опору провідника від температури.

Величину R називають електричним опором провідника. У СІ [R] = Ом. Електричний опір 1 Ом має така ділянка кола, на якій напруга дорівнює 1 В, якщо сила струму 1А

Опір - це основна електрична характеристика провідника. Він виражає міру протидії речовини провідника напрямленому рухові вільних заряджених частинок у ньому.

Причини виникнення опору

Електрони провідника невпинно й хаотично рухаються, але у випадку, коли до провідника не прикладена напруга, хаотичний рух електронів в середньому не призводить до переносу заряду — електричний струм дорівнює нулю [1] Електричний струм виникає тоді, коли існує переважний рух електронів у одному напрямку. Така ситуація можлива при наявності електрорушійної сили, енергія якої витрачається на переорієнтацію теплового руху електронів.

Під час свого руху електричні заряди взаємодіють з кристалічною ґраткою: зіштовхуються з атомами ґратки (розсіються). При цьому електрони віддають енергію, отриману від електричного поля джерела е.р.с., ґратці. Атоми, що перебувають в коливальному русі навколо положення рівноваги, збільшують амплітуду коливання. Тобто, енергія електричного поля перетворюється в енергію коливання атомів — в тепло.

В джерелі е.р.с. внаслідок кулонівського відштовхування електрони намагаються зайняти рівноважне положення, що відповідає їх найбільшій віддаленності один від одного. Щоб викликати струм, треба порушити цю рівновагу і спрямувати електрони у певному напрямку проти сил поля (в джерелах струму цю роботу виконують сторонні сили, наприклад, хімічні). Розглянуті процеси викликають появу внутрішнього опору джерела е.р.с..

Експерименти показали, що електричний опір провідника R прямо пропорційний його довжині l і обернено пропорційний площі поперечного перерізу S:

Сталий для речовини параметр ρ називають питомим опором цієї речовини. Питомий опір залежить від фізичних властивостей речовини, її стану, наявності домішок. Наприклад, у металевих провідниках наявність домішок збільшує питомий опір. Числове значення питомого опору дорівнює опору провідника завдовжки 1 м з площею поперечного перерізу 1 м2. У СІ питомий опір вимірюють в омах на метр: [ρ] = Ом·м. Значення питомого опору речовини занесено до таблиць.

Залежність опору від температури

Причиною виникнення опору є розсіювання (зіткнення) носіїв заряду на атомах ґратки. При збільшенні температури, по-перше, збільшується теплова швидкість електронів; по-друге, збільшується амплітуда коливання атомів відносно їхнього рівноважного положення. Необхідно зазначити, що вплив першого процесу, а саме — збільшення теплової швидкості, в меншій мірі впливає на опір провідника, ніж коливання атомів, оскільки при кімнатній температурі (20o С) теплова швидкість становить близько 105 см/сек, або 100 км/сек. Тому підвищення температури, наприклад на Δt = 40 — 60 °C, не приведе до суттєвого збільшення швидкості. А от амплітуда коливання атомів може збільшитися в кілька разів. Це викличе збільшення ефективного перетину розсіювання носіїв заряду на атомах і, як наслідок, приведе до збільшення ймовірності розсіювання. Зазначені явища призводять до втрат енергії носіями заряду. Струм через провідник при цьому зменшиться, тобто опір провідників при нагріванні збільшується.

Провідність металів зумовлена рухом вільних електронів. Це експериментально довели вітчизняні вчені Мандельштам і Папалексі (1913 р.), а також Стюарт і Толмен (1916 р.).

Опір металевих провідників з підвищенням температури збільшується. Це зумовлено тим, що під час нагрівання металевого провідника збільшується середня квадратична швидкість теплового руху електронів провідності і енергія коливань іонів кристалічних ґраток, тому збільшується частота зіткнень електронів з іонами.

Залежність опору провідника від темпера­тури враховується температурним коефіцієнтом опору .

Температурний коефіцієнт опору — це число, що показує, на­скільки змінюється опір провідника на кожний Ом його початкового опору при зміні температури матеріалу на 1 °С:

звідки де — Опір провідника при зміненій температурі ; — його опір при початковій температурі.

Якщо інтервал зміни температури невеликий,то температурний коефіцієнт вважають сталим.Сплави з високим питомим опором (наприклад, для сплаву міді з нікелем - константану r 10-6 Ом·м) використовують для виготовлення еталонних опорів, тобто у тих випадках, коли потрібно, щоб опір помітно не змінювався у разі зміни температури. Залежність опору металів від температури використовують у термометрах опору.