
- •Тема 5. Проверка статистических гипотез
- •5.1 Основные понятия, используемые при проверке гипотез
- •5.1.1 Статистические гипотезы
- •5.1.2 Уровень значимости и мощность критерия. Ошибки при проверке гипотез
- •5.1.3 Статистические критерии
- •5.1.3 Общая схема проверки гипотез
- •5.1.4 Односторонние и двусторонние критерии
- •5.2 Проверка однородности выборок в прикладных задачах
- •5.2.1 Однородность выборок
- •5.2.2 Независимость выборок
- •5.2.3 Параметрические и непараметрические гипотезы
- •5.3 Параметрические методы проверки однородности выборок
- •5.3.1 Традиционный метод проверки однородности двух независимых выборок (критерий Стьюдента)
- •5.3.2 Классические условия применимости критерия Стьюдента
- •5.3.3 Использование критерия Крамера-Уэлча при проверке равенства математических ожиданий двух независимых выборок
- •5.3.4 Сравнение среднего с нормативом (t-тест одной выборки)
- •5.3.5 Сравнение двух зависимых выборок при помощи t-критерия Стьюдента
- •5.4 Непараметрические методы проверки однородности выборок
- •5.5 Сравнение двух независимых выборок
- •5.5.2 Сравнение двух независимых выборок. Критерий серий Вальда—Вольфовица
- •X1, x2, x3, x4, x5 и y1, y2, y3, y4, y5, y6.
- •X1, x2, x3, x4, x5, y1, y2, y3, y4, y5, y6
- •X1, x2, y1, y3, x4, y2, y3, y4, y5, x5, y6.
- •5.5.3 Сравнение двух независимых выборок. Тест Колмогорова-Смирнова
- •5.6 Сравнение двух зависимых выборок
- •5.6.1 Сравнение двух зависимых выборок с использованием теста знаков
- •5.6.2 Сравнение двух зависимых выборок с использованием теста Уилкоксона (Вилкоксона)
- •5.7 Сравнение нескольких выборок
- •5.7.1 Сравнение нескольких независимых выборок. Критерий Крускала-Уоллиса
- •5.7.2 Сравнение нескольких зависимых выборок. Критерий Фридмана
- •5.8 Использование критерия согласия Пирсона
- •5.9 Проверка статистических гипотез применительно к таблицам сопряженности
- •Для уровней статистической значимости
- •Критические значения статистики Колмогорова-Смирнова
5.1.3 Статистические критерии
Однозначно определенный способ проверки статистических гипотез называется статистическим критерием. Статистический критерий строится с помощью некоторой статистики U(x1, x2, …, xn) – функции от результатов наблюдений x1, x2, …, xn. В пространстве значений статистики U выделяют критическую область Ψ, т.е. область со следующим свойством: если значения применяемой статистики принадлежат данной области, то нулевую гипотезу отклоняют (иногда говорят – отвергают), в противном случае – не отклоняют (т.е. принимают).
Статистику U, используемую при построении определенного статистического критерия, называют статистикой этого критерия.
5.1.3 Общая схема проверки гипотез
Процедура проверки гипотез обычно проводится по следующей схеме:
Формулируются гипотезы Н0 и Н1.
Выбирается уровень значимости критерия.
По выборочным данным вычисляется значение некоторой случайной величины, называемой статистикой критерия, или просто статистическим критерием, который имеет известное стандартное распределение (нормальное, Т-распределение Стьюдента и т.п.)
Вычисляется критическая область и область принятия гипотезы. То есть находят критическое (граничное) значение критерия при выбранном уровне значимости.
5. Найденное значение критерия сравнивается с критическим и по результатам сравнения делается вывод: отвергнуть гипотезу или не отвергнуть. Если вычисленное по выборке значение критерия меньше чем критическое, то нулевую гипотезу Но не отвергают на заданном уровне значимости.
В этом случае наблюдаемое по экспериментальным данным различие генеральных совокупностей можно объяснить только случайностью выборки. Однако это совсем не означает доказательства равенства параметров генеральных совокупностей. Просто имеющийся в распоряжении статистический материал не дает оснований для отклонения гипотезы о том, что эти параметры одинаковы. Возможно, появится другой экспериментальный материал, на основании которого эта гипотеза будет отклонена.
Если вычисленное значение критерия больше критического, то гипотеза Н0 отклоняется в пользу гипотезы Н1 при данном уровне значимости.
В этом случае наблюдаемое различие генеральных совокупностей уже нельзя объяснить только случайностями и говорят, что наблюдаемое различие значимо (статистически значимо) на выбранном уровне значимости.
Следует подчеркнуть разницу между статистической значимостью и практической значимостью. Заключение о практической значимости всегда делается человеком, изучающим данное явление. И здесь истинным критерием является опыт и интуиция исследователя, а статистические критерии значимости — лишь формально точный инструмент, используемый в исследовании. Чем больше исследователь знает об изучаемом явлении, тем точнее будет сформулированная им гипотеза и тем точнее будут выводы, сделанные с помощью критериев значимости.
В настоящее время при проверке гипотез, особенно с использованием специализированных программных средств, уровень значимости до эксперимента точно не устанавливается, а по экспериментальным данным вычисляется вероятность Р того, что критерий (статистика критерия) выйдет за пределы значения, рассчитанного по выборке. Таким образом, Р — это экспериментальный (эмпирический уровень значимости. Точное значение Р обычно не указывают, а окончательные результаты приводят, сравнивая вычисленное значение критерия со стандартными значениями. Если, например, Р не превосходит 0,05, то на уровне значимости 5% различие считается статистически незначимым.
Критерии значимости подразделяются на три типа:
1. Критерии значимости, которые служат для проверки гипотез о параметрах распределений генеральной совокупности (чаще всего нормального распределения). Эти критерии называются параметрическими.
2. Критерии, которые для проверки гипотез не используют предположений о распределении генеральной совокупности. Эти критерии не требуют знания параметров распределений, поэтому называются непараметрическими.
3. Особую группу критериев составляют критерии согласия, служащие для проверки гипотез о согласии распределения генеральной совокупности, из которой получена выборка, с ранее принятой теоретической моделью (чаще всего нормальным распределением).