- •Університет митної справи та фінансів
- •Міністерство освіти і наукиукраїни
- •Програма навчальної дисципліни «статистика»
- •Зміст навчальної дисципліни «статистика» модуль 1. Теорія статистики
- •Тема 5. Узагальнюючі статистичні показники
- •Тема 6. Методи аналізу рядів розподілу
- •Змістовий модуль 3. Аналіз закономірностей динаміки
- •Тема 7. Аналіз інтенсивності динаміки
- •Тема 8. Виявлення і вимірювання тенденцій розвитку
- •Тема 9. Індексний метод
- •Тема 10. Статистичні методи вивчення взаємозв’язків явищ
- •Тема 11. Вибірковий метод спостереження
- •Тема 1. Методологічні засади статистики
- •Завдання та методичні рекомендації до вивчення теми
- •I етап - Статистичне спостереження
- •II етап - Первинна обробка, зведення, класифікація та групування статистичних даних.
- •Питання для самоконтролю
- •Тестові завдання
- •1. Предметом статистики є вивчення:
- •Тема 2. Статистичне спостереження План вивчення теми
- •Завдання та методичні рекомендації до вивчення теми
- •Програмно-методологічні питання
- •Визначення організаційної форми, виду та способу проведення спостереження
- •Логічний та арифметичний контроль даних
- •Питання для самоконтролю
- •Тестові завдання
- •Проводиться запис шлюбів та розлучень. За ступенем охоплення одиниць сукупності це спостереження:
- •Тема 3. Зведення і групування статистичних даних План вивчення теми
- •Завдання та методичні рекомендації до вивчення теми
- •Графічне зображення результатів групування
- •Побудова вторинних групувань
- •Питання для самоконтролю
- •Приклади розв’язання типових задач
- •Розподіл робітників складального цеху за кваліфікацією
- •Підприємство і
- •Підприємство іі
- •Тестові завдання
- •Тема 4. Подання статистичних даних:таблиці та графіки План вивчення теми
- •Завдання та методичні рекомендації до вивчення теми
- •Питання для самоконтролю
- •Тестові завдання
- •Змістовий модуль 2. Агрегування інформації та аналіз закономірностей розподілу
- •Тема 5. Узагальнюючі статистичні показники План вивчення теми
- •Завдання та методичні рекомендації до вивчення теми
- •Середні величини
- •Питання для самоконтролю
- •Приклади розв’язання типових задач
- •Тестові завдання
- •Тема 6. Методи аналізу рядів розподілу План вивчення теми
- •Завдання та методичні рекомендації до вивчення теми
- •Вимірювання варіації ознак за допомогою абсолютних і відносних мір варіації: розмаху варіації, середніх лінійного та квадратичного відхилень, коефіцієнтів варіації
- •Показники варіації та формули для їх розрахунку
- •Оцінювання інтенсивності структурних зрушень
- •Аналіз рівномірності розподілу за допомогою коефіцієнтів концентрації та децильної диференціації
- •Характеристики форми розподілу: коефіцієнти асиметрії та ексцесу
- •Питання для самоконтролю
- •Приклади розв’язання типових задач
- •Розподіл товару на складі за його ціною
- •Тестові завдання
- •Длянаведеного ряду розподілу
- •Коефіцієнт Джині дозволяє оцінити:
- •Тема 7. Аналіз інтенсивності динаміки План вивчення теми
- •Завдання та методичні рекомендації до вивчення теми
- •1 Метод – з використанням коефіцієнтів перерахунку.
- •2 Метод - заміна абсолютних рівнів відносними.
- •Абсолютні та відносні характеристики інтенсивності динаміки
- •Розрахунок середнього абсолютного приросту і середнього темпу приросту
- •Оцінка прискорення (уповільнення) розвитку. Порівняльний аналіз динамічних рядів з використанням коефіцієнтів випередження та еластичності
- •Питання для самоконтролю
- •Приклади розв’язання типових задач
- •Результати обчислення показників динамічного ряду
- •Результати приведення до однієї основи показників динамічних рядів
- •Тестові завдання
- •Якщо у 2010 р. На підприємстві обсяг виробленої продукції становив 15 млн. Грн., а у 2014 р. – 20 млн. Грн., то середньорічний абсолютний приріст обсягу продукції за цей період часу становить:
- •Тема 8. Виявлення і вимірювання тенденцій розвитку План вивчення теми
- •Завдання та методичні рекомендації до вивчення теми
- •Застосування ступінчастої та ковзної середніх для згладжування коливних рядів
- •Обґрунтування типу трендового рівняння, інтерпретація параметрів
- •Найпростішою формулою, що відтворює тенденцію розвитку, є лінійна функція:
- •Значення параметра t у разі введення умовного нуля для парної кількості рівнів динамічного ряду
- •Значення параметра t у разі введення умовного нуля для непарної кількості рівнів динамічного ряду
- •Елементи інтерполяції та екстраполяції на основі часових рядів
- •Питання для самоконтролю
- •Приклади розв’язання типових задач
- •1. Метод середньої ступінчастої
- •2. Метод середньої плинної
- •3. Метод аналітичного вирівнювання
- •Допоміжна таблиця для розрахунку параметрів лінійної моделі
- •Значення параметра t у разі введення умовного нуля для непарної кількості рівнів динамічного ряду
- •Допоміжна таблиця для розрахунку параметрів параболи
- •Тестові завдання
- •Тема 9. Індексний метод План вивчення теми
- •Завдання та методичні рекомендації до вивчення теми
- •Суть індексів та їх роль у статистичному аналізі, розрахунок індивідуальних індексів
- •Розрахунок зведених індексів - агрегатних та середньозважених. Вибір форми індексу
- •Розкладання абсолютного приросту результативного показника за факторами
- •Методика розрахунку індивідуальних і зведених (загальних) індексів агрегатної та середньозваженої форм
- •Дослідження динаміки середніх величин
- •Питання для самоконтролю
- •Приклади розв’язання типових задач
- •Тестові завдання
- •Економічний зміст мають індекси ціни:
- •13. Середня геометрична з двох різнозважених індексів – це індекс ціни:
- •Тема 10. Статистичні методи вивчення взаємозв’язків явищ План вивчення теми
- •Завдання та методичні рекомендації до вивчення теми
- •Сутність та види взаємозв’язків явищ. Графічні методи вивчення кореляційного зв’язку
- •Метод аналітичних групувань і дисперсійний аналіз. Оцінювання щільності кореляційного зв’язку за даними аналітичного групування
- •2.Оцінка лінії регресії:
- •Регресійно-кореляційний аналіз взаємозв’язку. Оцінювання щільності та перевірка істотності кореляційного зв’язку на основі рівняння регресії
- •Питання для самоконтролю
- •Приклади розв’язання типових задач
- •Залежність між факторною (х) та результативною (у) ознаками
- •Допоміжна таблиця для розрахунку параметрів лінійної моделі
- •Допоміжна таблиця для обчислення коефіцієнта кореляції Пірсона
- •Тестові завдання
- •Тема 11. Вибірковий метод спостереження План вивчення теми
- •Оцінювання точності вибіркових даних. Розрахунок стандартної похибки вибірки і побудова довірчих меж для середньої і частки
- •Визначення мінімально достатнього обсягу вибірки
- •Питання для самоконтролю
- •Приклади розв’язання типових задач
- •Розподіл проданого товару за цінами
- •Дискретний ряд розподілу проданого товару за цінами
- •Розподіл засуджених за віком за звітний період (дані умовні)
- •Тестові завдання
- •Тема 3:Зведення і групування статистичних даних
- •Методичні рекомендації
- •Задачі для розв’язання Задача 1
- •Задача 2
- •Задача 3
- •Завдання 4
- •Завдання 5
- •Завдання6
- •Задача 7
- •Задача 8
- •Практичне заняття №2
- •Тема 5:Узагальнюючі статистичні показники План заняття
- •Методичні рекомендації до практичного заняття Розрахунок різних видів абсолютних і відносних величин, їх аналіз
- •Задачі для розв’язання Задача 1
- •Задача 2
- •Задача 3
- •Задача 4
- •Задача 5
- •Задача 6
- •Задача 7
- •Задача 8
- •Задача 9
- •Практичне заняття №3
- •Тема 6:Методи аналізу рядів розподілу План заняття
- •Методичні рекомендації до практичного заняття
- •Задачі для розв’язання Задача 1
- •Задача 2
- •Задача 3
- •Задача 4
- •Задача 5
- •Задача 6
- •Задача 7
- •Практичне заняття №4
- •Тема7: Аналіз інтенсивності динаміки План заняття
- •Методичні рекомендації до практичного заняття
- •Задачі для розв’язання Задача 1
- •Задача 2
- •Задача 3
- •Задача 4
- •Задача5
- •4. Індивідуальні завдання та методичні рекомендації до їх виконання
- •Рекомендації до вибору теми із
- •Основні етапи виконання із
- •5. КонтрольнІ заходи
- •Вимоги до оформлення ккр
- •Перелік питань для підготовки до класної контрольної роботи
- •Перелік питань для підготовки до іспиту
- •Література
- •Internet-ресурси:
- •Додатки
- •Значення критерію Стьюдента
- •Статистика
Регресійно-кореляційний аналіз взаємозв’язку. Оцінювання щільності та перевірка істотності кореляційного зв’язку на основі рівняння регресії
До основних етапів кореляційно - регресійного аналізу (КРА) відносять:
постановка завдання, встановлення наявності зв’язку між досліджуваними ознаками;
вибір найістотніших факторів для аналізу;
визначення характеру зв’язку, його напряму і форми, вибір математичного рівняння для вираження існуючих зв’язків;
знаходження параметрів рівняння і показників тісноти зв’язку;
статистична оцінка достовірності отриманих результатів.
Вимоги до сукупності, що досліджується:
сукупність має бути якісно однорідна (основний метод забезпечення однорідності - групування);
сукупність повинна бути достатньо великою за обсягом, щоб у результаті дії закону великих чисел показники регресії і кореляції були достатньо надійними і стійкими, відображали об'єктивні закономірності взаємозв'язку, були вільними від дій випадкових обставин;
спостереження мають бути статистично незалежними, тобто результати кожного спостереження не повинні залежати від результатів інших спостережень;
кожному значенню ознаки-фактора (xi) відповідає нормальний чи близький до нього розподіл результативної ознаки (у) з однаковою дисперсією.
Первинна обробка вихідної інформації - це перевірка її достовірності та перевірка того факту, який свідчить про збереження у необхідних межах вимог, які вона має задовольняти (однорідність, незалежність, нормальність розподілу).
Перевірка достовірності та збереження вимог, які має задовольняти вихідна інформація, здійснюється шляхом якісного її аналізу та за допомогою методів і критеріїв математичної статистики: F - критерій Фішера, t - критерій Стьюдента.
Фактори, що включаються до рівняння регресії, мають справляти достатньо суттєвий вплив на результативну ознаку, тобто зв'язок результативної ознаки з кожною факторною ознакою має бути достатньо тісним. Для попередньої перевірки зазначеного вище доцільно використовувати такі методи, як порівняння паралельних рядів та аналітичне групування: просте та комбінаційне.
Однак фактори, що входять до рівняння регресії, не повинні перебувати між собою в лінійному функціональному або дуже тісному кореляційному зв'язку, оскільки тісно пов'язані між собою фактори дублюють один одного та перекручують результати КРА, що призводить до нестійкості коефіцієнтів рівняння регресії.
Для цього необхідно визначити щільність зв'язку кожного фактора з кожним з інших факторів-ознак за допомогою розрахунку парних лінійних коефіцієнтів кореляції, а потім виключити один чи кілька тісно пов'язаних з іншим (іншими) факторами.
Кореляційний аналіз - це метод, за допомогою якого можна отримати кількісне вираження взаємозв'язку соціально-економічних явищ у вигляді рівняння регресії(рівняння кореляційного зв'язку), тобто у вигляді тієї чи іншої функції, що приблизно виражає залежність середнього значення результативної ознаки від одного чи декількох ознак-факторів:
(2.93)
При цьому термін „кореляція” використовується для оцінки щільності зв’язку між ознаками, а термін „регресія” – для опису виду і параметрів функції зв’язку (регресійної моделі). За числом факторних ознак , які входять в регресійну модель, розрізняють однофакторні та багатофакторнімоделі.
Залежно від вихідних даних теоретичною лінією регресії можуть бути різні типи кривих або пряма лінія. Особливе місце в обґрунтуванні форми зв’язку при проведенні кореляційного аналізу належить графікам, побудованим у системі прямокутних координат на основі емпіричних даних. Графічне зображення фактичних даних дає наочне уявлення про наявність і форму зв’язку між досліджуваними ознаками.
При побудові графіка на осі абсцис відкладають значення факторної ознаки, а на осі ординат - значення результативної ознаки. Побудований точковий графік називають кореляційним полем(див. рис. 2.21 у методичних рекомендаціях до теми №8). За характером розміщення точок на кореляційному полі роблять висновок про напрям і форму зв’язку. Якщо точки розкидані по всьому полю, то це свідчить про те, що зв’язок між ознаками відсутній або дуже слабкий. Якщо точки концентруються навколо уявної осі, направленої зліва, знизу, направо, вгору, то зв’язок прямий. Якщо ж навпаки зліва, зверху, направо, вниз - зв’язок обернений. Характер розміщення точок на кореляційному полі вказує на наявність прямолінійного або криволінійного зв’язку між досліджуваними ознаками, дозволяє добрати відповідне математичне рівняння для кількісної оцінки зв’язку, що існує між ознаками. Зв'язки між двома чинниками аналітично можуть бути виражені у вигляді прямої, степеневої функції, гіперболи та ін.:
1.У вигляді лінійної функції (пряма лінія), якщо результативна ознака рівномірно зростає (зменшується) зі зростанням (зменшенням) факторної ознаки:
(2.94)
де Yх - теоретичне значення результативної ознаки;
а0 і а1- параметри рівняння прямої (рівняння регресії);
х - індивідуальні значення факторної ознаки.
Параметри рівняння прямої а0 та а1 визначаються шляхом розв'язання системи нормальних рівнянь, одержаних методом найменших квадратів,основною умовою якого є мінімізація суми квадратів відхилень емпіричних значень від теоретичних:
(2.95)
Система нормальних рівнянь для знаходження параметрів парної лінійної регресійної моделі має вигляд:
(2.96)
де у - індивідуальні значення результативної ознаки.
За незгрупованими даними:
(2.97)
У рівнянні прямої параметр а0 економічного змісту не має, це - початок відліку, або значення при а1 = 0. Параметр а1 є коефіцієнтом регресії, який показує середню зміну результативної ознаки при зміні факторної ознаки на одиницю.
Коефіцієнти регресії є величинами іменованими і мають одиниці вимірювання, що відповідають ознакам, зв’язок між якими вони характеризують. Якщо a1> 0, то зв’язок прямий, якщо a1< 0, то зв’язок обернений, якщо a1 = 0, то зв’язок відсутній.
2. У вигляді степеневої функції, якщо значення факторної ознаки знаходяться у порядку геометричної прогресії і відповідні значення результативної ознаки також мають геометричну прогресію:
. (2.98)
Для визначення параметрів степеневої функції методом найменших квадратів необхідно привести її до лінійного вигляду шляхом логарифмування:
lg Yx = lg а0 + а1 lg х. (2.99)
Одержане рівняння відрізняється від рівняння звичайної (лінійної) регресії тим, що замість y, x та а0містить їх логарифми. Тому формули параметрів степеневої регресії можна отримати, якщо замінити у формулах розрахунку а0та а1рівняння прямої за не згрупованими даними y, x та а0їх логарифмами. Параметр а1у цьому випадку показує, на скільки відсотків змінюється в середньому у при зміні х на один відсоток.
3. У вигляді гіперболи, якщо результативна ознака зі зростанням (зменшенням) факторної ознаки зростає (зменшується) не нескінченно, а прямує до скінченої границі:
Yx=
а0
+ а1
. (2.100)
Для визначення параметрів рівняння гіперболи методом найменших квадратів, необхідно привести його до лінійного виду. Для цього треба здійснити заміну = х1.
Побудова множинних регресійних моделей - процес досить трудомісткий. Для вирішення цих завдань е різні методи, які описані в літературі та містяться у пакетах стандартних програм для ПЕОМ (АРМ-статистика).
При кореляційному зв’язку разом з досліджуваним фактором на результативну ознаку впливають і інші фактори, які не враховуються або не можуть бути враховані кількісно. При цьому дія їх може бути направлена як в сторону підвищення впливу результативної ознаки, так і в сторону його зниження. Тому виникає необхідність визначення тісноти зв’язку між ознаками, у визначенні сили дії досліджуваного фактора на результативну ознаку та в оцінці адекватності моделі. Для цього використовують такі характеристики:
• Лінійний коефіцієнт кореляції (r) використовується тільки для вимірювання щільності зв'язку лінійної форми:
(2.101)
або
(2.102)
або
;
(2.103)
де
(2.104)
(2.105)
Лінійний коефіцієнт кореляції може отримувати значення в межах:
[-1] ≤ r≤ [+1]. (2.106)
Якщо | r | = 1, то між досліджуваними ознаками існує функціональний зв’язок.
Якщо r = 0, то зв’язок відсутній.
Якщо r наближується до - 1, то між досліджуваними факторами існує щільний обернений зв’язок.
Якщо r наближується до + 1, то між досліджуваними факторами існує щільний прямий зв’язок.
За шкалою Чеддока, якщо
r = 0,1 – 0,3 , то зв’язок слабкий;
r = 0,3 – 0,5 , то зв’язок помірний;
r = 0,5 – 0,7 , то зв’язок помітний;
r = 0,7 – 0,9 , то зв’язок високий;
r = 0,9 – 0,99 , то зв’язок надто високий.
Коефіцієнт детермінації R2використовується для вимірювання щільності зв'язку між ознаками за будь-якої форми зв'язку, як лінійної, так і нелінійної:
R2
=
(2.107)
де
- дисперсія, визначена для теоретичних
значень результативної ознаки, які
отримані за рівнянням регресії;
-
дисперсія, що визначена для емпіричних
значень результативної ознаки.
=
(2.108)
=
(2.109)
Коефіцієнт детермінації змінюється від 0 до 1: чим ближче R2 до 1, тим тісніший зв’язок між ознаками. Недолік цього показника – він не показує напрямок зв’язку.
Для оцінки адекватності регресійної моделізастосовуютьF-критерій Фішера (F) або t-критерій Стьюдента.
t-критерій Стьюдента - після побудови регресійної моделі здійснюється перевірка відповідності знаків параметрів напрямові впливу чинників, а також дається оцінка значущості коефіцієнта кореляції за t-критерієм Стьюдента.
Для парної лінійної регресійної моделі розрахункові значення t - критерію обчислюють за формулою
(2.110)
де (п - 2) — кількість ступенів вільності.
Розрахункові значення t-критерію Стьюдента порівнюють з критичними (табличними) для відповідного числа ступенів вільності: k = n - m (де n — кількість спостережень; m — число параметрів) та прийнятого рівня значущості α.
Якщо емпіричне значення t буде більшим за критичне, то лінійний коефіцієнт кореляції визнається значимим.
Методика визначення F-критерія Фішера (F) застосовується для перевірки істотності зв’язку (див. формулу 3.91 і представлену до неї методику).
