
okv-02
.pdf
√ |
|
E = √ |
|
|
H |
|
|
|
|
|
|
|
|
|
|
|
|
||||
ε0 |
µ0 |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
√ |
|
E√ |
|
H |
|
√ |
|
E√ |
|
H |
|
|
|
1 |
|
|||
|
|
|
ε0 |
µ0 |
|
ε0 |
µ0 |
|
|
||||||||||||
Тогда |
плотность |
потока энергии |
равна |
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
µ0EH = c EH |
||||||||||||||||||
= |
2 |
|
|
|
+ |
2 |
|
|
= √ε0 |
Удобно записать это равенствоS = wc = EHв векторном виде:
h i
~ ~ ~
S = E, H
волмагдвиженияЭнергияскоимпульсФазоваяПлотностьедельнаяîñòüитныхэлектроскорость-
п тока энергии- интенсивности,ëíûé ВекторÏîйн нгаУмова
íÿ
связь
ЗамедлтромагнитныхволнЯвлениевещинтерэлектромагнитамплИмпульсДавлениеотражениëíглощеныпритудойíèåòíûõнцииствеэлекE - --
Сложениегармонич скидвух

Вектор ~
называетсяЭтодпПотокчерезëоскихя любогоундаментальнаяповерхностьэнергии,S. векторомплотностьвидапереносимойэлектромагнитныхУмпотокаормула,âà электромагнитнойПойнэнергиикотораяèíãàâîëí,. Ýòîò. справедливаневектортольковолной
F , вычисляется по ормуле
Φ = Z |
SdF~ ~ |
F |
|
волмагдвиженияЭнергияскоимпульсФазоваяПлотностьедельнаяîñòüитныхэлектроскорость-
п тока энергии- интенсивности,ëíûé ВекторÏîйн нгаУмова
íÿ
связь
ЗамедлтромагнитныхволнЯвлениевещинтерэлектромагнитамплИмпульсДавлениеотражениëíглощеныпритудойíèåòíûõнцииствеэлекE - --
Сложениегармонич скидвух

Вектор ~
называетсяЭтодпПотокчерезëоскихлюбогоундаментальнаяповерхностьэнергии,S. векторомплотностьвидапереносимойэлектромагнитныхУмпотокаормула,ва электромагнитнойПойнэнергиикотораяингаволн,. Этот. справедливаневектортольковолной
F , вычисляется по ормуле
Φ = Z |
SdF~ ~ |
F |
|
волмагдвиженияЭнергияскоимпульсФазоваяПлотностьедельнаяîñòüитныхэлектроскорость-
п тока энергии- интенсивности,ëíûé ВекторÏîйн нгаУмова
íÿ
связь
ЗамедлтромагнитныхволнЯвлениевещинтерэлектромагнитамплИмпульсДавлениеотражениëíглощеныпритудойíèåòíûõнцииствеэлекE - --
Сложениегармонич скидвух

Вектор ~
называетсяЭтодпПотокчерезëоскихлюбогоундаментальнаяповерхностьэнергии,S. векторомплотностьвидапереносимойэлектромагнитныхУмпотокаормула,ва электромагнитнойПойнэнергиикотораяингаволн,. Этот. справедливаневектортольковолной
F , вычисляется по ормуле
Φ = Z |
SdF~ ~ |
F |
|
волмагдвиженияЭнергияскоимпульсФазоваяПлотностьедельнаяîñòüитныхэлектроскорость-
п тока энергии- интенсивности,ëíûé ВекторÏîйн нгаУмова
íÿ
связь
ЗамедлтромагнитныхволнЯвлениевещинтерэлектромагнитамплИмпульсДавлениеотражениëíглощеныпритудойíèåòíûõнцииствеэлекE - --
Сложениегармонич скидвух

ИнтенсивностьинтенсивностиэлектромагнитнойДля того, чтобы. охарактеризоватьволны, оптике энергиюиспользуют понятиеE
есть среднее по времени от модуля вектора Умова Пойнтинга.
D E
~
I = |S|
T
волмагдвиженияЭнергияскоимпульсФазоваяПлотностьедельнаяîñòüитныхэлектроскорость-
п тока энергии- интенсивности,ëíûé ВекторÏîйн нгаУмова
íÿ
связь
ЗамедлтромагнитныхволнЯвлениевещинтерэлектромагнитамплИмпульсДавлениеотражениëíглощеныпритудойíèåòíûõнцииствеэлекE - --
Сложениегармонич скидвух

или косинуса, то можноE использоватьH |
ормулу связи |
|||||||||||||
√ |
ε0εEìàêñ = √ |
|
ìàêñ |
|||||||||||
µ0µH |
||||||||||||||
|
|
|
|
|
|
|
√ |
|
|
|
|
|
||
|
|
Hìàêñ = |
ε0 |
ε |
Eìàêñ |
|
||||||||
|
|
√ |
|
|
|
|||||||||
|
|
µ0 |
µ |
|
||||||||||
E = Eìàêñ cos(kx − ωt + α) |
||||||||||||||
H = H |
cos(kx − ωt + α) |
|||||||||||||
S = EH = EìàêñHìàêñ cos cos(kx − ωt + α)2 |
||||||||||||||
|
√ |
|
|
|
|
|
|
|
|
|
|
|
|
|
S = |
ε0 |
ε |
2 |
|
|
|
|
|
|
|
2 |
|||
|
|
|
Eìàêñ cos(kx − ωt + α) |
|||||||||||
√ |
|
|
||||||||||||
µ0 |
µ |
волмагдвиженияЭнергияскоимпульсФазоваяПлотностьедельнаяîñòüитныхэлектроскорость-
п тока энергии- интенсивности,ëíûé ВекторÏîйн нгаУмова
íÿ
связь
ЗамедлтромагнитныхволнЯвлениевещинтерэлектромагнитамплИмпульсДавлениеотражениëíглощеныпритудойíèåòíûõнцииствеэлекE - --
Сложениегармонич скидвух

или косинуса, то можноE использоватьH |
ормулу связи |
|||||||||||||
√ |
ε0εEìàêñ = √ |
|
ìàêñ |
|||||||||||
µ0µH |
||||||||||||||
|
|
|
|
|
|
|
√ |
|
|
|
|
|
||
|
|
Hìàêñ = |
ε0 |
ε |
Eìàêñ |
|
||||||||
|
|
√ |
|
|
|
|||||||||
|
|
µ0 |
µ |
|
||||||||||
E = Eìàêñ cos(kx − ωt + α) |
||||||||||||||
H = H |
cos(kx − ωt + α) |
|||||||||||||
S = EH = EìàêñHìàêñ cos cos(kx − ωt + α)2 |
||||||||||||||
|
√ |
|
|
|
|
|
|
|
|
|
|
|
|
|
S = |
ε0 |
ε |
2 |
|
|
|
|
|
|
|
2 |
|||
|
|
|
Eìàêñ cos(kx − ωt + α) |
|||||||||||
√ |
|
|
||||||||||||
µ0 |
µ |
волмагдвиженияЭнергияскоимпульсФазоваяПлотностьедельнаяîñòüитныхэлектроскорость-
п тока энергии- интенсивности,ëíûé ВекторÏîйн нгаУмова
íÿ
связь
ЗамедлтромагнитныхволнЯвлениевещинтерэлектромагнитамплИмпульсДавлениеотражениëíглощеныпритудойíèåòíûõнцииствеэлекE - --
Сложениегармонич скидвух

или косинуса, то можноE использоватьH |
ормулу связи |
||||||||||||||
√ |
ε0εEìàêñ = √ |
|
ìàêñ |
||||||||||||
µ0µH |
|||||||||||||||
|
|
|
|
|
|
|
|
√ |
|
|
|
|
|
||
|
|
Hìàêñ = |
ε0 |
ε |
Eìàêñ |
|
|||||||||
|
|
√ |
|
|
|
||||||||||
|
|
µ0 |
µ |
|
|||||||||||
E = E àêñ cos(kx − ωt + α) |
|||||||||||||||
H = Hìàêñ cos(kx − ωt + α) |
|||||||||||||||
S = EH = EìàêñHìàêñ cos cos(kx − ωt + α)2 |
|||||||||||||||
|
√ |
|
|
2 |
|
|
|
|
|
||||||
S = |
ε0 |
ε |
|
|
|
|
2 |
||||||||
|
|
|
Eìàêñ cos(kx − ωt + α) |
||||||||||||
√ |
|
|
|||||||||||||
µ0 |
µ |
волмагдвиженияЭнергияскоимпульсФазоваяПлотностьедельнаяîñòüитныхэлектроскорость-
п тока энергии- интенсивности,ëíûé ВекторÏîйн нгаУмова
íÿ
связь
ЗамедлтромагнитныхволнЯвлениевещинтерэлектромагнитамплИмпульсДавлениеотражениëíглощеныпритудойíèåòíûõнцииствеэлекE - --
Сложениегармонич скидвух

или косинуса, то можноE использоватьH |
ормулу связи |
|||||||||||||
√ |
ε0εEìàêñ = √ |
|
ìàêñ |
|||||||||||
µ0µH |
||||||||||||||
|
|
|
|
|
|
|
√ |
|
|
|
|
|
||
|
|
Hìàêñ = |
ε0 |
ε |
Eìàêñ |
|
||||||||
|
|
√ |
|
|
|
|||||||||
|
|
µ0 |
µ |
|
||||||||||
E = Eìàêñ cos(kx − ωt + α) |
||||||||||||||
H = H |
cos(kx − ωt + α) |
|||||||||||||
S = EH = EìàêñHìàêñ cos cos(kx − ωt + α)2 |
||||||||||||||
|
√ |
|
|
|
|
|
|
|
|
|
|
|
|
|
S = |
ε0 |
ε |
2 |
|
|
|
|
|
|
|
2 |
|||
|
|
|
Eìàêñ cos(kx − ωt + α) |
|||||||||||
√ |
|
|
||||||||||||
µ0 |
µ |
волмагдвиженияЭнергияскоимпульсФазоваяПлотностьедельнаяîñòüитныхэлектроскорость-
п тока энергии- интенсивности,ëíûé ВекторÏîйн нгаУмова
íÿ
связь
ЗамедлтромагнитныхволнЯвлениевещинтерэлектромагнитамплИмпульсДавлениеотражениëíглощеныпритудойíèåòíûõнцииствеэлекE - --
Сложениегармонич скидвух

или косинуса, то можноE использоватьH |
ормулу связи |
|||||||||||||
√ |
ε0εEìàêñ = √ |
|
ìàêñ |
|||||||||||
µ0µH |
||||||||||||||
|
|
|
|
|
|
|
√ |
|
|
|
|
|
||
|
|
Hìàêñ = |
ε0 |
ε |
Eìàêñ |
|
||||||||
|
|
√ |
|
|
|
|||||||||
|
|
µ0 |
µ |
|
||||||||||
E = Eìàêñ cos(kx − ωt + α) |
||||||||||||||
H = H |
cos(kx − ωt + α) |
|||||||||||||
S = EH = EìàêñHìàêñ cos cos(kx − ωt + α)2 |
||||||||||||||
|
√ |
|
|
|
|
|
|
|
|
|
|
|
|
|
ε0 |
ε |
2 |
|
|
|
|
|
|
|
2 |
||||
S = |
|
|
|
Eìàêñ cos(kx − ωt + α) |
||||||||||
√ |
|
|
||||||||||||
µ0 |
µ |
волмагдвиженияЭнергияскоимпульсФазоваяПлотностьедельнаяîñòüитныхэлектроскорость-
п тока энергии- интенсивности,ëíûé ВекторÏîйн нгаУмова
íÿ
связь
ЗамедлтромагнитныхволнЯвлениевещинтерэлектромагнитамплИмпульсДавлениеотражениëíглощеныпритудойíèåòíûõнцииствеэлекE - --
Сложениегармонич скидвух