
- •Введение
- •1. ОсновНые понятия и определения теории автоматического управления
- •1.1. Краткие сведения по истории развития систем автоматического управления
- •1.2. Обобщенная структурная схема сау
- •1.2. Классификация сaу
- •2. Математическое описание линейных сау
- •2.1. Составление и линеаризация дифференциальных уравнений сау
- •2.2. Основные свойства преобразования Лапласа. Операторные уравнения сау. Передаточные функции линейных звеньев и систем
- •Основные свойства (теоремы) преобразования Лапласа
- •Изображения по Лапласу типовых сигналов
- •2.3. Временные и частотные характеристики звеньев и систем
- •2.4. Элементарные звенья систем автоматического управления
- •Пропорциональное (усилительное, безинерционное, масштабирующее) звено
- •Интегрирующее звено
- •Идеальное дифференцирующее звено
- •Апериодическое звено первого порядка
- •Реальное дифференцирующее звено
- •Инерционное звено второго порядка
- •Звено чистого запаздывания
- •Интегро-дифференцирующее звено
- •Пропорционально-интегральный регулятор (пи-регулятор)
- •2.5. Неминимально-фазовые звенья
- •2.6. Эквивалентные преобразования структурных схем линейных сау
- •2.7. Передаточные функции многоконтурных систем
- •Вопросы для самопроверки
- •3. Анализ устойчивости линейныхсау
- •3.1.Понятие устойчивости линейных систем
- •3.2.Алгебраический критерий устойчивости Гурвица
- •3.3.Частотные критерии устойчивости Михайлова и Найквиста
- •3.4.Запасы устойчивости
- •3.5.Оценка устойчивости по логарифмическим амплитудно- и фазо-частотным характеристикам
- •3.6.Устойчивость систем с запаздыванием
- •Вопросы для самопроверки
- •4. Качество динамических характеристик сау
- •4.1. Показатели качества процесса регулирования
- •4.2. Частотные критерии качества
- •4.3. Корневые критерии качества
- •4.4. Интегральные критерии качества
- •Вопросы для самопроверки
- •5. Оценка точности сАу
- •5.1. Стационарные режимы сау. Передаточные функции статических и астатических систем
- •5.2. Коэффициенты ошибки системы
- •5.3. Системы комбинированного управления
- •Вопросы для самопроверки
- •6. Анализ сау в пространстве состояния
- •6.1. Основные положения метода переменных состояния
- •6.2. Способы построения схем переменных состояния
- •Метод прямого программирования
- •Метод параллельного программирования
- •Метод последовательного программирования
- •6.3. Решение уравнений состояния линейных стационарных сау. Вычисление фундаментальной матрицы
- •Вопросы для самопроверки
- •7. Коррекция линейных сАу
- •7.1. Цели и виды коррекции
- •Последовательные корректирующие звенья
- •Параллельные корректирующие звенья
- •7.2. Частотный метод синтеза корректирующих устройств
- •Построение лах в низкочастотном диапазоне
- •Построение лах в среднечастотном диапазоне
- •Зависимость колебательности от значений hи h1
- •Построение лах в высокочастотном диапазоне
- •7.3. Последовательные корректирующие устройства
- •7.4. Параллельные корректирующие устройства
- •7.5. Техническая реализация корректирующих звеньев
- •Пассивные четырехполюсники постоянного тока
- •Пассивные корректирующие четырехполюсники
- •Активные корректирующие звенья
- •Активные четырехполюсники постоянного тока
- •Вопросы для самопроверки
- •8. Нелинейные системы автоматического управления
- •8.1. Особенности нелинейных систем и методы их анализа
- •8.2. Исследование нелинейных систем на фазовой плоскости
- •8.3. Метод гармонической линеаризации нелинейных звеньев
- •Коэффициенты гармонической линеаризации типовых нелинейностей
- •8.5. Методы определения параметров автоколебаний
- •Вопросы для самопроверки
- •Курсовая работа
- •Задание для расчета линейной caу
- •Варианты задания для расчета линейной сау
- •Варианты передаточных функций линейной сау
- •Задание для расчета нелинейной сау
- •Варианты задания для расчета нелинейной сау
- •Варианты структурных схем нелинейных систем Варианты статических характеристик нелинейного элемента
- •Экзаменационные вопросы
- •Литература
Интегро-дифференцирующее звено
Интегро-дифференцирующее звено порядка – это звено, зависимость между выходным и входным сигналами которого описывается следующим дифференциальным уравнением:
Операторное уравнение звена:
.
Передаточная функция звена
.
Частотные характеристики:
;
;
;
(2.55)
Выполнив
несложные преобразования, можно
представить АФХ звена в виде функции,
связывающей вещественную
и
мнимую
частотные
характеристики:
,
(2.56)
где
;
.
Согласно
(2.55) – (2.56) годограф АФХ интегро-дифференцирующего
звена имеет вид полуокружности с радиусом
,
центр которой находится на действительной
положительной полуоси в точке
.
При этом годограф
расположен
в первом квадранте, еслиT1
> T2
(рис. 2.32,
а), и в четвертом квадранте, если T1
<T2
(рис.
2.32, б).
Вид всех остальных характеристик интегро-дифференцирующего звена также определяется соотношением между постоянными времени T1 и T2:
A(ω)==
;
;
.
Графики
логарифмической амплитудно- и
фазо-частотной характеристик приведены
на рис. 2.24. Очевидно, что при
>
в среднечастотном диапазоне преобладают
дифференцирующие свойства звена (наклон
ЛАХ +20дБ/дек), а при
<
– интегрирующие свойства (наклон ЛАХ
-20 дБ/дек).
Воспользуемся формулой разложения (2.15) для получения выражение переходной функции интегро-дифференцирующего звена.
Изображение по Лапласу переходной функции:
В соответствии с выражением (2.15):
;
;
;
;
;
;
;
и
Следовательно, переходная функция интегро-дифференцирующего звена (рис. 2.25) имеет вид:
Пропорционально-интегральный регулятор (пи-регулятор)
Пропорционально-интегральный регулятор (ПИ-регулятор) – это звено, зависимость между выходным и входным сигналами которого описывается следующим дифференциальным уравнением:
Операторное уравнение звена:
.
Передаточная функция звена
.
Следовательно, изображение по Лапласу сигнала на выходе звена представляет собой сумму двух составляющих, одна из которых пропорциональна входному сигналу, а вторая – пропорциональна интегралу от входного сигнала, что и определяет название данного звена:
.
Частотные характеристики ПИ-регулятора:
;
;
;
;
.
Графики
логарифмических амплитудно- и
фазо-частотной характеристик звена
приведены на рис.2.26.
Переходная функция звена (рис. 2.27):
.
2.5. Неминимально-фазовые звенья
Мы рассмотрели наиболее часто встречающиеся на практике типы минимально-фазовых звеньев. В отличие от них передаточная функция любого неминимально-фазового звена имеет хотя бы один «правый» ноль или полюс. Приведем пример такой передаточной функции:
.
Здесь имеется положительный полюс (корень знаменателя):
.
Частотные характеристики такого звена:
;
,
так
как при
входной и выходной гармонические сигналы
находятся в противофазе.
В то же время для обычного апериодического звена имеем:
Разница между ними, как видим, в величине фазы, амплитудные же характеристики одинаковы. Оказывается, что из всех возможных звеньев с одинаковыми амплитудными характеристиками минимально-фазовые типовые звенья обладают наименьшими по абсолютному значению фазовыми характеристиками. В этом и состоит смысл введенных терминов.
Важным
свойством минимально-фазовых звеньев
является однозначное соответствие
амплитудной и фазовой частотных
характеристик. Другими словами, по
заданной амплитудно-частотной
характеристике всегда можно определить
амплитудно-фазовую и наоборот. Этим же
свойством обладают вещественная
и мнимая
части амплитудно-фазовой характеристики
минимально-фазовых звеньев.
Заметим, что для данного неминимально-фазового звена переходная функция будет расходящейся, вместо обычной затухающей.