
- •Введение
- •1. ОсновНые понятия и определения теории автоматического управления
- •1.1. Краткие сведения по истории развития систем автоматического управления
- •1.2. Обобщенная структурная схема сау
- •1.2. Классификация сaу
- •2. Математическое описание линейных сау
- •2.1. Составление и линеаризация дифференциальных уравнений сау
- •2.2. Основные свойства преобразования Лапласа. Операторные уравнения сау. Передаточные функции линейных звеньев и систем
- •Основные свойства (теоремы) преобразования Лапласа
- •Изображения по Лапласу типовых сигналов
- •2.3. Временные и частотные характеристики звеньев и систем
- •2.4. Элементарные звенья систем автоматического управления
- •Пропорциональное (усилительное, безинерционное, масштабирующее) звено
- •Интегрирующее звено
- •Идеальное дифференцирующее звено
- •Апериодическое звено первого порядка
- •Реальное дифференцирующее звено
- •Инерционное звено второго порядка
- •Звено чистого запаздывания
- •Интегро-дифференцирующее звено
- •Пропорционально-интегральный регулятор (пи-регулятор)
- •2.5. Неминимально-фазовые звенья
- •2.6. Эквивалентные преобразования структурных схем линейных сау
- •2.7. Передаточные функции многоконтурных систем
- •Вопросы для самопроверки
- •3. Анализ устойчивости линейныхсау
- •3.1.Понятие устойчивости линейных систем
- •3.2.Алгебраический критерий устойчивости Гурвица
- •3.3.Частотные критерии устойчивости Михайлова и Найквиста
- •3.4.Запасы устойчивости
- •3.5.Оценка устойчивости по логарифмическим амплитудно- и фазо-частотным характеристикам
- •3.6.Устойчивость систем с запаздыванием
- •Вопросы для самопроверки
- •4. Качество динамических характеристик сау
- •4.1. Показатели качества процесса регулирования
- •4.2. Частотные критерии качества
- •4.3. Корневые критерии качества
- •4.4. Интегральные критерии качества
- •Вопросы для самопроверки
- •5. Оценка точности сАу
- •5.1. Стационарные режимы сау. Передаточные функции статических и астатических систем
- •5.2. Коэффициенты ошибки системы
- •5.3. Системы комбинированного управления
- •Вопросы для самопроверки
- •6. Анализ сау в пространстве состояния
- •6.1. Основные положения метода переменных состояния
- •6.2. Способы построения схем переменных состояния
- •Метод прямого программирования
- •Метод параллельного программирования
- •Метод последовательного программирования
- •6.3. Решение уравнений состояния линейных стационарных сау. Вычисление фундаментальной матрицы
- •Вопросы для самопроверки
- •7. Коррекция линейных сАу
- •7.1. Цели и виды коррекции
- •Последовательные корректирующие звенья
- •Параллельные корректирующие звенья
- •7.2. Частотный метод синтеза корректирующих устройств
- •Построение лах в низкочастотном диапазоне
- •Построение лах в среднечастотном диапазоне
- •Зависимость колебательности от значений hи h1
- •Построение лах в высокочастотном диапазоне
- •7.3. Последовательные корректирующие устройства
- •7.4. Параллельные корректирующие устройства
- •7.5. Техническая реализация корректирующих звеньев
- •Пассивные четырехполюсники постоянного тока
- •Пассивные корректирующие четырехполюсники
- •Активные корректирующие звенья
- •Активные четырехполюсники постоянного тока
- •Вопросы для самопроверки
- •8. Нелинейные системы автоматического управления
- •8.1. Особенности нелинейных систем и методы их анализа
- •8.2. Исследование нелинейных систем на фазовой плоскости
- •8.3. Метод гармонической линеаризации нелинейных звеньев
- •Коэффициенты гармонической линеаризации типовых нелинейностей
- •8.5. Методы определения параметров автоколебаний
- •Вопросы для самопроверки
- •Курсовая работа
- •Задание для расчета линейной caу
- •Варианты задания для расчета линейной сау
- •Варианты передаточных функций линейной сау
- •Задание для расчета нелинейной сау
- •Варианты задания для расчета нелинейной сау
- •Варианты структурных схем нелинейных систем Варианты статических характеристик нелинейного элемента
- •Экзаменационные вопросы
- •Литература
2. Математическое описание линейных сау
2.1. Составление и линеаризация дифференциальных уравнений сау
Процессы, происходящие в САУ, в общем случае описываются нелинейными дифференциальными уравнениями, которые могут быть решены лишь в отдельных редких случаях. Однако для достаточно большого числа систем эти уравнения с приемлемой для решения практических задач точностью могут бытьзаменены линеаризованными.
Рассмотрим
принцип линеаризации на примере системы,
у которой входнойи выходной
сигналы связаны нелинейной статической
зависимостью
.
Пусть в установившемся режиме величина
входного сигнала равна
и
его отклонения от этого значения в
переходных процессах достаточно малы.
Разложив
нелинейную зависимость
в
ряд Тейлора в окружности точки
установившегося режима и, отбросив
члены ряда выше первого порядка малости,
получим следующую приближенную
зависимость:
,
(2.1)
где
-
значение производной функции
по
при
подстановке в выражение этой производной
значения
=
.
Выражение
(2.1) можно переписать в виде:
,
(2.2)
где
;
;
.
Проведенная
линеаризация имеет простую графическую
интерпретацию: она соответствует (рис.
2.1) замене действительной нелинейной
характеристики касательной к ней в
точке, соответствующей установившемуся
режиму. Коэффициент
k
в выражении
(2.2) равен тангенсу угла наклона этой
касательной относительно оси
.
Поэтому его величина может быть найдена
простым графическим построением без
нахождения аналитического выражения
нелинейной зависимости
и
ее производной.
В более общем случае, система описывается нелинейным дифференциальным уравнением, связывающим производные по времени входного и выходного сигналов:
.
(2.3)
Разложив нелинейную функцию (2.3) в ряд Тейлора в точке установившегося движения, получим следующее линейное дифференциальное уравнение для приращения переменных:
….+
…
+………..
,
(2.4)
где
..,
и
т.д. – значения производных функции
(2.3) полученные при подстановке значений
входного и выходного сигналов,
соответствующих установившемуся режиму.
Следовательно, процедура линеаризации нелинейных систем дает возможность описать их линейными дифференциальными уравнениями в отклонениях. Очевидно, что допустимость такой линеаризации ограничена требованием к незначительности отклонений сигналов от их установившихся значений. Кроме того, поскольку такая линеаризация основана на разложении в ряд Тейлора, она применима только к непрерывно дифференцируемым нелинейностям.
Нелинейные звенья и системы, не удовлетворяющие этому требованию, называются существенно нелинейными. К существенно нелинейным звеньям относятся звенья с прерывистыми характеристиками, например, звенья с релейными характеристиками или неоднозначными характеристиками типа петли гистерезиса.
2.2. Основные свойства преобразования Лапласа. Операторные уравнения сау. Передаточные функции линейных звеньев и систем
В общем случае дифференциальное уравнение, связывающее изменение во времени входной и выходной сигналы линеаризованной системы, имеет следующий вид:
(2.5)
Решение дифференциальных уравнений (2.3) – (2.4) зачастую связано со значительными трудностями, а во многих случаях, например в следящих системах, не может быть осуществлено, так как неизвестно управляющее воздействие. По этим причинам исследование систем ведется косвенными методами, например, базирующимися на операционном преобразовании Лапласа.
Приведем основные сведения о преобразовании Лапласа, которые будут использованы при рассмотрении систем, описываемых линейными дифференциальными уравнениями.
Преобразованием Лапласа называют интегральное преобразование:
,
(2.6)
определяющее
соответствие между функцией
вещественного переменного (в рассматриваемой
теории – функцией времени
)
и функцией
комплексного переменного
.
При этом
называюторигиналом,
а
–изображением
или
изображением
по Лапласу.
Символическая запись такого
преобразования:
=
,
где
– оператор преобразования Лапласа.
Предполагается,
что функция времени
,
которая подвергается преобразованию
Лапласа, обладает следующими свойствами:
определена и дифференцируема на всей положительной числовой полуоси
;
= 0 при
;
существуют такие числа М и
, что
при
.
Функции, обладающие указанными тремя свойствами, часто называют функциями-оригиналами.
Соотношение
=
,
(2.7)
определяющее
по известному изображению его оригинал
(в точках непрерывности последнего),
называют обратным
преобразованием Лапласа.
В нем интеграл берется вдоль прямой Re
p
=
.
Символически обратное преобразование
Лапласа можно записать так:
=
,
где
– символ обратного преобразования
Лапласа.