- •Введение
- •Формальный нейрон. Типология нейронов. Задача, решаемая нейроном, геометрическая интерпретация.
- •Формальный нейрон.
- •Типология нейронов.
- •Геометрическая интерпретация задачи нейрона.
- •Нейронная сеть. Слой, типология слоёв. Типология нейронных сетей. Основные классы задач, решаемых нейронными сетями.
- •задачи
- •Задача обучения нейронной сети, отличие от задачи обучения нейрона. Проблемы. Примеры алгоритмов и методов обучения.
- •Градиентные методы.
- •Математическое обоснование метода обратного распространения ошибки. Алгоритм обратного распространения ошибки.
- •Вывод формулы для расчёта адаптивного коэффициента обучения в алгоритме обратного распространения ошибки.
- •Вывод формулы для расчёта адаптивного шага обучения для нерекуррентной линейной нейронной сети.
- •Алгоритм послойного обучения. Назначение и отличие от алгоритма обратного распространения ошибки.
- •Алгоритм многократного распространения ошибки. Назначение и отличие от алгоритма обратного распространения ошибки.
- •Задача предсказания числовых последовательностей с помощью нейронных сетей. Особенности устройства нейронных сетей для предсказания числовых последовательностей.
- •Реккурентные нейронные сети. Контекстный нейрон. Обучение. Сеть Элмана. Сеть Джордана.
- •Рециркуляционные нейронные сети. Линейная рециркуляционная сеть. Задача, решаемая линейной рециркуляционной сетью (метод главных компонент).
- •Алгоритмы обучения и функционирования линейной рециркуляционной сети.
- •Релаксационные нейронные сети. Синхронная сеть Хопфилда. Непрерывное и дискретное состояние. Структура, обучение, энергия, функционирование.
- •Сеть Хэмминга. Назначение, обучение и функционирование.
- •Линейная ассоциативная память и ассоциативная память на основе сети Хопфилда. Функционирование, отличие.
- •Двунаправленная ассоциативная память. Назначение, структура, обучение и функционирование.
- •Двунаправленная ассоциативная память. Метод обучения двунаправленной ассоциативной памяти с модифицированной структурой.
- •Сеть адаптивного резонанса. Назначение, структура, обучение и функционирование.
- •СТРУКТУРА APT
- •Функционирование сети APT в процессе классификации
- •ФУНКЦИОНИРОВАНИЕ APT
- •ПРИМЕР ОБУЧЕНИЯ СЕТИ APT
- •ЗАКЛЮЧЕНИЕ
- •Устройство и структура нейронных сетей для решения задач классификации и кластеризации. Правила обучения: WTA и CWTA.
- •Структура когнитрона, неокогнитрона и свёрточных нейронных сетей, отличия. Назначение когнитрона, неокогнитрона и свёрточных нейронных сетей.
- •Обучение
- •НЕОКОГНИТРОН
- •Обобщение
- •Вычисления
- •Обучение
- •Псевдооптическая нейронная сеть. Интерферирующий нейрон, устройство. Назначение, структура и функционирование сети.
- •Машина Больцмана, назначение. Устройство и функционирование.
- •Предетекторы и детекторы. Поле (карта) детекторов. Детекторы новизны и тождества. Схема активного анализа на основе нейроподобных элементов.
- •Аппаратная реализация нейронных сетей. Процедура проектирования систолических массивов (процессоров), на основе структуры сети.
- •Систолические процессоры для двухслойной нейронной сети (первый слой – рецепторы). Эффективность. Предпочтение по эффективности.
- •Систолический массив с разнонаправленными связями. Сравнение по эффективности с процессорами с однонаправленными связями.
- •Матричный систолический процессор. Сравнение по эффективности.
- •Систолические массивы для многослойных нейронных сетей. Структура систолического массива, объединяющего различные систолические процессоры. Эффективность.
- •Систолические массивы для многослойных нейронных сетей. Структура систолического массива, объединяющего идентичные систолические процессоры. Эффективность.
- •Систолические процессоры для реализации релаксационных нейронных сетей (сети Хопфилда).
- •Методы обеспечения отказоустойчивости. Скользящее резервирование.
- •Методы обеспечения отказоустойчивости. Секционированное резервирование. Схема для неоднородного потока входных данных.
- •Нечёткие нейронные сети. Структура, функционирование, обучение.
- •Литература.
Структура когнитрона, неокогнитрона и свёрточных нейронных сетей, отличия. Назначение когнитрона, неокогнитрона и свёрточных нейронных сетей.
Когнитрон конструируется в виде слоев нейронов, соединенных синапсами. Как показано на рис. 33, предсинаптический нейрон в одном слое связан с постсинаптическим нейроном в следующем слое. Имеются два типа нейронов: возбуждающие узлы, которые стремятся вызвать возбуждение постсинаптического узла, и тормозящие узлы, которые тормозят это возбуждение. Возбуждение нейрона определяется взвешенной суммой его возбуждающих и тормозящих входов, однако в действительности механизм является более сложным, чем простое суммирование.
Рис. 33. Пресинаптические и постсинаптические нейроны
На рис. 34 показано, что каждый нейрон связан только с нейронами в соседней области, называемой областью связи. Это ограничение области связи согласуется с анатомией зрительной коры, в которой редко соединяются между собой нейроны, располагающиеся друг от друга на расстоянии более одного миллиметра. В рассматриваемой модели нейроны упорядочены в виде слоев со связями от одного слоя к следующему. Это также аналогично послойной структуре зрительной коры и других частей головного мозга.
