- •Для подготовки по курсу «Обработка композиционных и наноструктурированных материалов»
- •Понятие о композитах, получении и обработки
- •Принципы получения и обработки композиционных и наноструктурированных материалов
- •Общая классификационная картина композиционных и наноструктурированных материалов
- •Понятия микро- и макроструктуры композиционных и наноструктурированных материалов
- •Аддитивные технологии (3d-печать) -цифровое производство
- •Технологии 3d-печати
- •Selective Laser Sintering (sls) — селективное лазерное спекание
- •Selective Laser Melting (slm) — селективное лазерное плавление
- •Проблема управления структурно-фазовыми превращениями
- •Термоаналитический анализ материалов
- •Температурный анализ свойств материалов
- •Метод изотермического дискретного сканирования (идс)
Selective Laser Melting (slm) — селективное лазерное плавление
В данной технологии слои мелкозернистого металлического порошка под воздействием сверхмощного лазера сплавляются (спекаются) в среде инертного газа в цельнометаллические изделия. Металлический порошок разравнивается ракелем по рабочему пространству, затем контур детали заштриховывается импульсным лазером высокой мощности. Сферические гранулы металлического порошка сплавляются в цельнометаллическое изделие.
Материалы: алюминий, титан, конструкционная сталь, нержавеющая сталь, никель, сплав кобальт-хром. Поддержкой выступает несплавленный металлический порошок, но зачастую рекомендуется дополнительно моделировать поддержки для организации теплоотвода с целью снижения температурных деформаций детали. Применение: конечные изделия сложной геометрии, функциональная интеграция деталей, изготовление форм для литья пластиков. В зависимости от производителя оборудования данная технология также может носить название Direct Metal Printing (DMP) и Direct Metal Laser Sintering.
Завершая обзор существующих технологий, хочется отметить, что сильные стороны аддитивного производства конечных изделий лежат в тех областях, где традиционное производство ограничено теми или иными барьерами, например, сложной формой детали, высоким весом или высокой стоимостью. Также 3D-печать является наиболее оптимальным способом сокращения времени разработки изделий за счет быстрого создания прототипов деталей и узлов.
4D-печать программируемой материи
Логическим продолжением 3D-печать стала прорывная технология - 4D-печать программируемой материи, именно материи, а не материалов. 4D-печать способна возвести 3D-печать на новый уровень, вводя еще одно измерение самоорганизации – время. Это обеспечивает возможность в преобразовании цифровой информации в физические объекты. Программирование материи — объединение науки и технологии в деле создания новых материалов, которые приобретают общее, ранее невиданное свойство, а именно: изменять форму и свойства (плотность, модуль упругости, проводимость, цвет и т. д.) целенаправленным способом.
Пока разработка программируемой материи идет в двух направлениях:
1. Изготовление изделий методами 4D-печати — печать заготовок на 3D-принтерах, а затем их самотрансформация под воздействием заданного фактора, например влаги, тепла, давления, тока, ультрафиолетового света или другого источника энергии.
2. Изготовление вокселей (дословно — объемных пикселей) на 3D-принтерах, которые могут соединяться и разъединятся для формирования более крупных программируемых структур.
Например, для существования огромного биоразнообразия на нашей планете достаточно 22 строительных блоков — аминокислот. Поэтому животные и растения, потребляя друг друга, повторно используют фактически один и тот же биоматериал. Такой подход к программированию материи имеет очень большой потенциал. Так, пиксель является элементарной единицей виртуального изображения объекта, а воксель может быть материальной единицей самого объекта в материальном мире. Оба они несут в себе аналогию с аминокислотой. Элементарной единицей материи является атом, но элементарных единиц напечатанной и программируемой материи может быть намного больше и по составу, по структуре, по размеру.
Используя только два вида вокселей (жесткие и мягкие) можно создать самые разные материалы. Если добавить к ним проводящие воксели, конденсаторы, резисторы и получим электронную плату, а если включить активаторы и сенсоры, то получим робота. Технология 4D-печати предполагает непосредственное включение («впечатывание») проводников или проводящих элементов во время печати задания в 3D. После того как объект напечатан, части могут быть активированы с помощью внешнего сигнала, чтобы запустить устройство в целом. Это подход с большим потенциалом в таких областях, как робототехника. Другие 4D-технологии заключаются в использовании композитных материалов, которые способны приобретать различные сложные формы на основе разнообразия физико-механических свойств. Трансформация запускается потоком тепла (нормируемая тепловая энергия) или потоком света определенной длины волны.
Встраивание датчиков в напечатанные 3D-устройства также имеет большие перспективы. Путем вставки наноматериалов можно создать многофункциональные нанокомпозиты, которые способны изменять свойства в соответствии с изменением окружающей среды. Новые материалы самопроизвольно или по команде будут распадаться на программируемые частицы или компоненты, которые затем можно повторно использовать для формирования новых объектов и для выполнения новых функций. Долгосрочный потенциал программируемой материи и технологии 4D-печати заложен в создании экологически более устойчивого мира. Одним из перспективных направлений развития 4D-печати и программирования материи является разработка под конкретный заказ наборов из нескольких вокселей различных форм и с разными функциями, а затем их программирование для еще более специализированных приложений. Теоретически можно изготавливать воксели из металла, пластика, керамики или любого материала. Основные принципы такой технологии аналогичны функционированию ДНК и самоорганизации биологических систем.
Однако на пути к такому радужному будущему предстоит ответить на ряд вопросов:
Как программировать САПР для работы с программируемой материей, которая включает многомасштабные, многоэлементные компоненты, но самое главное — статические и динамические части?
Как создать материалы с многофункциональными свойствами и встроенными логическими возможностями?
Как гарантировать надежность воксельных соединений? Она может быть сравнима с прочностью традиционных изделий, при этом позволяя реконфигурацию или вторичную переработку после использования?
4. Какие методы использовать для генерации энергии в источниках, которые должны быть одновременно пассивными и очень мощными? Как хранить и использовать эту энергию для активации отдельных вокселей и всего программируемого материала изделия?
5. Как эффективно встроить электронное управление или создать управляемые свойства самой материи в нанометровом масштабе?
6. Как программировать и работать с отдельными вокселями — цифровыми и физическими? Как программировать изменение состояний?
Управление структурно-фазовыми превращениями с целью получения изделий и материалов с более качественными свойствами
Последнее время пристальное внимание исследователей привлекают модели структурно-фазовых превращений с позиций кластерных теорий строения вещества. Особый интерес связан с изучением формирования новой фазы в различных физических полях, в частности, электромагнитных и акустических. Речь идет о фоновом акустическом влиянии на структурно-фазовые превращения в материалах через электромагнитно-акустическое преобразование с резонансным откликом в некотором интервале частот.
Слабые периодические сигналы могут оказывать влияние на неравновесные гетерофазные процессы, скорее всего, в области разрывов фазовых границ, то есть в промежуточной области, называемой мезофазой. К ней можно отнести границу между жидкой и твердой фазой в момент кристаллизации жидкой фазы и отчетливо выраженные границы раздела между компонентами композиционных и наноструктурированных материалов. Они характеризуются гетерофазными флуктуациями плотности, которым присуще свойство фазовых переходов I рода, то есть изменение свойств скачком.
Имеется предположение, что в расплавах металлов атомы находятся не в хаотичном состоянии, а формируют упорядоченные структуры - кластеры, которые являются основой для образования кристаллов. Кластер – это область в некристаллическом веществе, в которой атомы создают взаимоконфигурации, имеющие существенно большее упорядочение, чем в среднем по объему вещества. Следовательно, в атомно-кластерной модели металлического расплава взаимодействие между атомами в кластере существенно сильнее, чем взаимодействие между атомами вне кластера. При этом атомно-кластерная модель желательно сохранить при затвердевании расплава. Для этой цели имеются технические средства, которые реально дают возможность показать управляющее воздействие электромагнитных полей на гетерофазные процессы посредством акустических волн, образующихся в ходе электромагнитного-акустического преобразования (ЭМАП).
Распространение в проходящей через такое метастабильное состояние электромагнитных и акустических колебаний малой мощности порождает физические эффекты, использование которых в технологиях создает реальные предпосылки улучшения качества обработки материалов, что достигается изменением режимов массо- и теплообмена. Сама мезофаза составлена из флуктуирующих надмолекулярных элементов (первичный кластер), либо более крупные структурные элементы (вторичный и третичный кластеры), откликающихся на частоту следования импульсов тока в радиодиапазоне.
Это было научным открытием, которое относится к материаловедению, металлургическому производству, к процессам литья и сварки. В описании научного открытия обобщаются регулятивные эффекты слабого импульсного электрического тока радиочастотного диапазона в короткозамкнутой петле магнитного диполя (антенны), проявляемые как тензоимпульсные синхронизирующие эффекты в конденсированной среде, претерпевающей неравновесные структурно-фазовые превращения при кристаллизации и плавлении, пластической деформации металлов и сплавов.
Предложена и обоснована с позиций термодинамики необратимых процессов и кинетики конденсированных сред модель влияния слабых регулярных электротоковых импульсов радиочастотного диапазона в короткозамкнутой петле магнитного диполя (антенны) на физико-химические процессы и свойства конечных продуктов структурно-фазовых превращений. Дано единое обоснование тензоимпульсных синхронизирующих эффектов действием имманентной акустической волны, рождаемой в скин-слое антенны совокупным явлением, известным как электромагнитно-акустическое преобразование (ЭМАП).
Построена модель механизма формирования акустического поля в скин-слое антенны как электромагнитно-динамический эффект и выполнены количественные оценки эффективности ЭМАП в магнитном диполе антенны для импульсов различной формы, частоты, скважности, полярности и амплитуды. Обоснован режим фоновой регуляции физико-химических процессов ультраслабыми сигналами, отвечающими тонким механизмам самоорганизации кластерных структур. Показано существование верхних амплитудных порогов имманентной, адаптивной фоновой регуляции, отличающей её от директивных методов грубого нарушения хода естественной самоорганизации.
Предложен механизм распространения акустического регулятивного сигнала в волновом канале мезофазы с резонансным усилением на частотах фазовой синхронизации за счёт нелинейного преобразования энергии высокочастотных мод, высвобождающейся в процессах структурно-фазовых превращений и внутреннего диффузионно-конвективного тепло- массопереноса. Построена теоретическая основа фоновой акустической резонансной регуляции самоорганизации (ФАРРС) как параметрической синхронизации автогенераторных вихревых структур мезофазы, образующих в режиме ФАРРС систему протяжённых когерентных кластеров с аномальными кинетическими свойствами интенсивного и экстенсивного переноса в реакционной зоне. Из положений этой теории вытекают такие эффекты ФАРРС, как экспериментально наблюдаемая кинетическая и фазово-переходная память реакционных сред, высокая скорость и энергетическая эффективность неравновесных физико-химических процессов и однородность свойств их продуктов.
