- •1 Питання .Для довільних а та в на множині z завжди можливі такі випадки :
- •2. Питання Теорема 1(про подільність суми достатня умова)
- •3. Питання:Теорема 3(про подільність різниці достатня умова)
- •4. Теорема про подільність добутку
- •5. Загальна ознака подільності б.Паскаля.
- •7. Питання Знаходження нсд чисел за алгоритмом Евкліда.
- •8 Питання . Прості і складені числа. Побудова таблиці простих чисел.
- •11 Питання Нескінченність множини простих чисел (теорема Евкліда)
- •20. Розглянемо приклад, який приводить до рівняння з двома змінними.
- •Розв'язки рівняння із двома змінними
- •Властивості рівнянь із двома змінними
- •22. Числова нерівність. Правильні числові нерівності. Властивості правильних числових нерівностей (Доведення за вибором студента).
- •35. Поняття функції. Область визначення і множина значень функції. Способи задання функції. Графік функції.
- •37 Питання: Загальна схема дослідження функції та побудови її графіка
- •38 Питання: 1. Дробово-лінійна функція та її графік
- •39. Поняття про геометричну фігуру. Найпростіші геометричні фігури: точка, пряма, площина. Відрізок, промінь, ламана. Довжина ламаної та різні способи її обчислення.
- •40. Кут. Види кутів. Бісектриса кута.
- •41. Трикутник та його елементи. Види трикутників. Найважливіші властивості трикутника. Єгипетський трикутник.
- •42. Означення та властивості таких чотирикутників як: паралелограм, трапеція.
- •43. Означення та властивості таких чотирикутників як: прямокутник, ромб, квадрат.
- •44.Трикутник вписаний в коло і описаний навколо нього.
- •45. Чотирикутник вписаний в коло і описаний навколо нього.
- •46. Коло. Круг. Круговий сектор і круговий сегмент
- •47. Призма. Означення, основні елементи та властивості призми
- •48. Прямокутний паралелепіпед. Куб. Основні властивості. Побудова розгортки куба.
- •49.Означення піраміди. Елементи піраміди. Означення піраміди. Елементи піраміди.
- •Формули
- •Властивості
- •50. 51 Циліндр. Конус. Сфера, куля та її частини
- •53. Основні задачі на побудову на площині: побудова трикутника за трьома заданими сторонами.
- •54. Охарактеризувати загальну схему розв’язування задач на побудову: аналіз – побудова – доведення – дослідження. Геометричне місце точок як основний метод розв’язування задач на побудову.
- •55 Основні способи доведення геометричних тверджень.Універсальний метод доведення.
- •56. Поняття міркування, правильні та неправильні міркування. Перевірка правильності міркувань з допомогою кругів л.Ейлера.
- •56.Правильні і неправильні міркування.Виявлення помилок в умовиводах за допомогою кругів Ейлера
- •57 Структура теореми. Прості і складені теореми. Види теорем
- •2. Способи доведення теорем (дедуктивний, індуктивний, метод від супротивного тощо).
- •3. Необхідні та достатні умови.
- •58. Основні способи доведення теорем. Аналітичний і синтетичний способи доведення теорем.
- •4. Взявши одержаний істинний висновок за вихідне твер дження, провести міркування у зворотному напрямку і перейти, якщо це можливо, до висновку про правильність доводжуваного твердження.
- •59.Основні способи доведення геометричних тверджень. Метод вичерпування або повної індукції.
- •S1 має ознака р
- •60.Основні способи доведення теорем. Метод доведення від супротивного. Пропедевтика доведень в початковому курсі математики.
2. Способи доведення теорем (дедуктивний, індуктивний, метод від супротивного тощо).
2. Спочатку зазначимо, що довести теорему – це означає встановити логічним шляхом, що завжди, коли виконується властивість А(х) буде виконуватись і властивість В(х). Доведення теорем в математиці проводиться за правилом логіки без будь-яких посилань на наочність та досвід. У математиці існують різні способи доведення теорем, які класифікують по-різному. Серед різних способів доведення теорем зупинимося на характеристиці тих, які найчастіше зустрічаються в шкільному курсі математики. У першу чергу вкажемо на дедуктивний спосіб доведення теорем, сутність якого полягає в тому, що виходячи з умови теореми і використовуючи доведені раніше теореми, ми будуємо ланцюжок міркувань, який дозволяє нам переконатися в справедливості висновків теорем. Покажемо це на прикладі такої теореми «Сума внутрішніх кутів довільного трикутника дорівнює 180°».
Доведення: беремо довільний трикутник (див. малюнок №27) і проводимо через його вершину пряму, паралельну протилежній стороні (це можна зробити, оскільки доведено, що через точку, поза прямою можна провести пряму, паралельну даній). <1+<2+<3=180°, як сума кутів, які утворюють розгорнутий кут. <1=<4 – як внутрішні різносторонні при паралельних прямих та січній. Аналогічно <3=<5. Тоді рівність <1+<2+<3=180° перетвориться у рівність <4+<2+<5=180°. Отже, сума внутрішніх кутів трикутника дорівнює 180°. Теорему доведено.
|
|
|
|
Малюнок № 27.
Сутність індуктивних доведень полягає в тому, що на основі розглянутих кількох окремих випадків ми робимо загальний висновок. Для того, щоб не розглядати всі часткові випадки, в математиці є метод доведення, який називається методом математичної індукції. Він складається з таких етапів: а) перевіряємо твердження для n=1; б) припускаємо істинність твердження при n=k; в) виходячи з припущення пробуємо довести істинність твердження при n=k+1. Тоді дане твердження буде справедливим для будь-якого натурального числа. Проілюструємо сказане на такому прикладі: довести, що добуток двох послідовних натуральних чисел ділиться націло на 2.
Доведення:
1. Перевіримо справедливість твердження для будь-якої пари послідовних натуральних чисел. Дійсно, добуток 1•2=2, а 2 кратне 2. Отже, для n=1 і n=2 твердження справедливе.
2. Припустимо, що твердження справедливе для будь-якої пари послідовних натуральних чисел n і n+1, тобто n(n+1) 2.
3. Спробуємо довести справедливість твердження для n=k+1. Утворимо добуток (n+1)(n+2) і розкриємо другу дужку. Отримуємо (n+1)n+2(n+1). У цій сумі перший доданок (n+1)n ділиться націло на 2 згідно припущення, а другий доданок 2(n+1) ділиться націло на 2 згідно теореми про подільність добутку. Таким чином, кожен доданок суми ділиться на 2, а тому і сума (n+1)n+2(n+1)=(n+1)(n+2) поділиться націло на 2. Отже, теорему доведено.
Наступним способом доведень є спосіб доведення від супротивного, сутність якого полягає в тому, що ми заперечуємо висновок теореми і пробуємо це довести. В результаті ми приходимо до суперечності із умовою теореми або з доведеним раніше твердженням. Найбільш часто цей спосіб доведення використовують при доведенні теорем єдиності. Покажемо це на такому прикладі: якщо різниця двох дійсних чисел існує, то вона єдина.
Доведення: нехай нам дано два дійсних числа а,вєR. Згідно означення різниці число а-в=сєR. Припустимо, що різниця двох дійсних чисел не єдина. Нехай існують дві різних різниці, тобто: а-b=с1 і а-b=с2, причому с1≠с2. Звідси маємо а=b+с1 і а=b+с2, тобто b+с1=b+с2, а тепер с1=с2, що суперечить вибору чисел с1 і с2. Ця суперечність говорить, що наше припущення про неєдиність різниці було хибним. Таким чином, якщо різниця існує, то вона єдина. Теорему доведено.
