Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
++З+М+Х_dec_21.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
9.63 Mб
Скачать

8.4. Специальные виды резисторов.

К категории специальных резисторов относят резисторы, сопротивление которых зависит от внешних факторов: температуры, освещенности, магнитного поля и т. д.

Варисторы — полупроводниковые резисторы, сопротивление которых зависит от приложенного к ним напряжения. Варисторы изготавливают путем спекания кристаллов карбида кремния и связующих веществ. В готовой структуре варистора между кристаллами кремния существуют мельчайшие зазоры. При приложении к варистору внешнего напряжения происходит перекрытие этих зазоров, в результате чего сопротивление варистора уменьшается [29].

Параметрами варистора являются:

  • 1 − номнальное напряжение

  • 2 − номинальный ток ;

  • 3− статическое сопротивление ;

  • 4 − дифференциальное сопротивление, ;

  • 5.− коэффициент нелинейности. |

Поскольку сопротивление варисторов значительно меняется с изменением приложенного напряжения, то они находят применение в качестве регулирующих элементов в устройствах автоматики. В обозначении варисторов содержатся буквы СН (сопротивление нелинейное).

Терморезисторы — это полупроводниковые резисторы, сопротивление которых меняется в зависимости от температуры. Вследствие нелинейности температурной характеристики вольт-амперная характеристика (ВАХ) будет также нелинейной. При малых токах ВАХ практически линейна, поскольку мощность, выделяемая в терморезисторе, недостаточна для того, чтобы заметно нагреть его. При больших токах сопротивление резистора уменьшается, что сопровождается уменьшением напряжения на нем.

ВАХ Варистора

Характеристики терморезисторов

Терморезисторы используют в системах измерения и регулирования температуры. В обозначении терморезисторов содержатся буквы СТ.

Фоторезисторы — это полупроводниковые резисторы, сопротивление которых меняется под воздействием света. Они используются в качестве датчиков освещенности в системах телеметрии.

Тензорезисторы — это резисторы, сопротивление которых изменяется под влиянием механических воздействий.

Магниторезисторы — это резисторы с резко выраженной зависимостью электрического сопротивления от магнитного поля. Свойства магниторезисторов оценивают магниторезистивным отношением, которое показывает, во сколько раз изменяется сопротивление магниторезистора при помещении его в магнитное поле с индукцией 0,5 Т (или 1 Т).

8.5. Конденсаторы

Как накопитель электрического заряда и энергии конденсатор, как известно, отличается от других видов накопителей тем, что накопление энергии в нем происходит в электрическом поле между его электродами, при этом приращения заряда и напряжения описываются приведенными выше функциональными зависимостями. Представляется естественным то обстоятельство, что основные параметры и свойства конденсатора определяются параметрами и свойствами среды или, иначе, материалов, в которых формируется его электрическое поле.

Основная, наиболее массовая часть современной номенклатуры конденсаторов для радиоэлектронной аппаратуры формируется на основе трех видов конденсаторов:

  • керамические конденсаторы,

  • конденсаторы с оксидным диэлектриком,

  • конденсаторы с органическим диэлектриком.

В последние годы все большее применение в радиоэлектронной аппаратуре находят так называемые конденсаторы с двойным электрическим слоем (ионисторы), у которых электрическое поле сосредоточено не в поляризованном диэлектрике, как у названных выше конденсаторов, а в двойном электрическом слое, образующемся при определенных условиях на границе "электродэлектролит".

В первом приближении свойства реального конденсатора могут быть представлены его схемой замещения, приведенной на рис. 8.9.

Рис. 8.9. Схемой замещения конденсатора

Первое отличие реального конденсатора от идеального определяется объемной и поверхностной проводимостью диэлектрика, элементов конструкции и корпуса или оболочки конденсатора. Доля каждой составляющей общей проводимости существенным образом зависит от вида диэлектрика, конструктивного оформления конденсатора, его емкости и номинального напряжения. В зависимости от вида конденсатора его общая проводимость нормируется предельными значениями его общего сопротивления (сопротивление изоляции – на рис. 8.9) либо тока утечки при номинальном напряжении. Следует отметить, что с увеличением емкости конденсатора все большая доля проводимости конденсатора приходится на объемную проводимость диэлектрика, что, в свою очередь, определяет практически обратно пропорциональную зависимость сопротивления изоляции от емкости конденсатора. В связи с изложенным для конденсаторов относительно большой емкости в нормативной документации приводят не сопротивление изоляции, а постоянную времени, равную Поскольку сопротивление изоляции и ток утечки конденсаторов значимо зависят от температуры и влажности окружающей среды и, в общем случае, от напряжения и времени его приложения, методы и условия их измерения регламентируют в нормативной документации на конденсаторы.

Другим отличием реального конденсатора являются потери энергии в нем, связанные с поляризацией диэлектрика (диэлектрические потери) и прохождением тока по электродам и выводам конденсатора. Доля каждой составляющей общих потерь зависит от вида диэлектрика и конструкции конденсатора и, в общем случае, может изменяться в зависимости от частоты воздействующего на конденсатор напряжения. Суммарные потери энергии в конденсаторе при работе его на переменном напряжении определяются, как известно, таким параметром, как , который равен отношению активной мощности (мощности потерь) к реактивной мощности конденсатора на заданной частоте, а сам угол δ, является углом, дополняющим на векторной диаграмме угол сдвига фаз тока и напряжения на конденсаторе до 90о. Однако, параметр по определению имеет физический смысл только при гармонической форме воздействующего напряжения. Поэтому при более сложных формах напряжения на конденсаторе, а также для характеристики добротности конденсатора при частотах, близких к резонансной (зависит от собственной индуктивности конденсатора – L на рис. 8.9), потери энергии в конденсаторе характеризуют величиной эквивалентного последовательного сопротивления ( на рис. 8.9), потери в котором в данном конкретном режиме равны суммарным потерям в конденсаторе. Отметим, что и и являются частотно-зависимыми параметрами, поэтому их значения нормируют и определяют на конкретной, заданной частоте. В отдельных случаях, например, при необходимости минимизации собственной индуктивности конденсатора, ее предельное значение устанавливают в нормативной документации.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]