- •1.2. Определители. Свойства определителей
- •Контрольная работа 2.2. Конспект лекции Лекции № 1-3 Тема 1. Линейная алгебра
- •§ 1.1. Матрицы. Определители 2-го и 3-го порядков. Свойства
- •§ 1.2. Миноры и алгебраические дополнения. Разложение
- •§ 1.3. Некоторые виды матриц и их определители
- •§ 1.4. Операции над матрицами. Обратная матрица. Ранг матрицы
- •§ 1.5. Ранг матрицы
- •§ 1.6. Системы линейных алгебраических уравнений (с.Л.А.У.). Матричный метод решения, правило Крамера.
- •§ 1.7. Метод Гаусса для исследования и решения с.Л.А.У.
- •Линейные подпространства Определение и примеры
- •Пересечение и сумма линейных подпространств
- •Ранг системы векторов
- •Квадр формы и их применения
- •Примеры
- •Свойства действий над векторами
- •Проекция вектора на ось
- •Координаты точки на числовой оси, на плоскости и в пространстве
- •Теоремы о проекции вектора на ось
- •Длина вектора. Направляющие косинусы вектора
- •Понятие базиса. Разложение вектора по базису
- •Скалярное произведение векторов
- •3.9.1Свойства скалярного произведения.
- •3.9.2Следствия изсвойств скалярного произведения.
- •3.9.3Скалярные произведения векторов через координаты
- •Смешанное произведение векторов
- •Свойства смешанного произведения
- •Геометрический смысл смешанного произведения векторов
- •Прямая линия на плоскости. Системы координат на плоскости.
- •Полярная система координат.
- •Деление отрезка в данном отношении.
- •Прямая линия на плоскости. Уравнение прямой через угловой коэффициент .
- •Уравнение прямой, проходящей через заданную точку и в данном направлении.
- •Уравнение прямой, проходящей через 2 точки.
- •Уравнение прямой в отрезках по осям.
- •Линии 2-го порядка на плоскости. Основные понятия.
- •Окружность.
- •Эллипс.
- •Гипербола.
- •Парабола.
- •Способы задания функций
- •Бесконечно малая
- •Непрерывность функции в точке и на интервале
- •Пределы. Непрерывность функций Числовая последовательность и ее свойства
- •Предел числовой последовательности
- •Предел функции Предел функции в бесконечности
- •Бесконечно малые и большие величины
- •Признаки существования и основные свойства пределов
- •Основные свойства пределов
- •Свойства непрерывных функций
- •Производная. Геометрический и механический смысл производной
- •8.Таблица производных и правила дифференцирования
- •Возрастание и убывание функции
- •Точки экстремума, экстремумы функции.
- •Достаточные условия возрастания и убывания функции.
- •Достаточные условия экстремума функции.
- •Первое достаточное условие экстремума.
- •Второй признак экстремума функции.
- •Третье достаточное условие экстремума функции.
- •Экстремумы функции Определение экстремума
- •Точки экстремума
8.Таблица производных и правила дифференцирования
О том, что такое производная, мы рассказали в статье «Геометрический смысл производной». Если функция задана графиком, её производная в каждой точке равна тангенсу угла наклона касательной к графику функции. А если функция задана формулой — вам помогут таблица производных и правила дифференцирования, то есть правила нахождения производной.
Возрастание и убывание функции
Определение возрастающей функции.
Функция y=f(x) возрастает
на интервале X,
если для любых
и
выполняется
неравенство
.
Другими словами – большему значению
аргумента соответствует большее значение
функции.
Определение убывающей функции.
Функция y=f(x) убывает
на интервале X,
если для любых и выполняется
неравенство
.
Другими словами – большему значению
аргумента соответствует меньшее значение
функции.
ЗАМЕЧАНИЕ: если функция определена и непрерывна в концах интервала возрастания или убывания (a;b), то есть при x=a и x=b, то эти точки включаются в промежуток возрастания или убывания. Это не противоречит определениям возрастающей и убывающей функции на промежутке X.
К
примеру, из свойств основных элементарных
функций мы знаем, что y=sinx определена
и непрерывна для всех действительных
значений аргумента. Поэтому, из возрастания
функции синуса на интервале
мы
можем утверждать о возрастании на
отрезке
.
Точки экстремума, экстремумы функции.
Точку
называют точкой
максимума функции y=f(x),
если для всех x из
ее окрестности справедливо неравенство
.
Значение функции в точке максимума
называютмаксимумом функции и
обозначают
.
Точку называют точкой
минимума функции y=f(x),
если для всех x из
ее окрестности справедливо неравенство
.
Значение функции в точке минимума
называютминимумом функции и
обозначают
.
Под
окрестностью точки понимают
интервал
,
где
-
достаточно малое положительное число.
Точки минимума и максимума называют точками экстремума, а значения функции, соответствующие точкам экстремума, называют экстремумами функции.
Не путайте экстремумы функции с наибольшим и наименьшим значением функции.
На первом рисунке наибольшее значение функции на отрезке [a;b] достигается в точке максимума и равно максимуму функции, а на втором рисунке – наибольшее значение функции достигается в точке x=b, которая не является точкой максимума.
Достаточные условия возрастания и убывания функции.
На основании достаточных условий (признаков) возрастания и убывания функции находятся промежутки возрастания и убывания функции.
Вот формулировки признаков возрастания и убывания функции на интервале:
если производная функции y=f(x) положительна для любого x из интервала X, то функция возрастает на X;
если производная функции y=f(x) отрицательна для любого x из интервала X, то функция убывает на X.
Таким образом, чтобы определить промежутки возрастания и убывания функции необходимо:
найти область определения функции;
найти производную функции;
решить неравенства
и
на
области определения;к полученным промежуткам добавить граничные точки, в которых функция определена и непрерывна.
Рассмотрим пример нахождения промежутков возрастания и убывания функции для разъяснения алгоритма.
Пример.
Найти
промежутки возрастания и убывания
функции
.
Решение.
Первым
шагом является нахождение обрасти
определения функции. В нашем примере
выражение в знаменателе не должно
обращаться в ноль, следовательно,
.
Переходим
к нахождению производной функции:
Для
определения промежутков возрастания
и убывания функции по достаточному
признаку решаем неравенства
и
на
области определения. Воспользуемся
обобщением метода интервалов. Единственным
действительным корнем числителя
является x
= 2,
а знаменатель обращается в ноль при x=0.
Эти точки разбивают область определения
на интервалы, в которых производная
функции сохраняет знак. Отметим эти
точки на числовой прямой. Плюсами и
минусами условно обозначим интервалы,
на которых производная положительна
или отрицательна. Стрелочки снизу
схематично показывают возрастание или
убывание функции на соответствующем
интервале.
Таким
образом,
и
.
В точке x=2 функция определена и непрерывна, поэтому ее следует добавить и к промежутку возрастания и к промежутку убывания. В точке x=0 функция не определена, поэтому эту точку не включаем в искомые интервалы.
Приводим график функции для сопоставления с ним полученных результатов.
Ответ:
функция
возрастает при
,
убывает на интервале (0;2].
