Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Zachet_Matematika.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.91 Mб
Скачать

Вторично-активный транспорт

Существуют системы транспорта через мембраны, которые переносят вещества из области их низкой концентрации в область высокой концентрации без непосредственного расхода энергии метаболизма клетки (как в случае первично-активного транспорта). Такой вид транспорта называется вторично- активным транспортом.   Вторично-активный транспорт некоторого вещества возможен только тогда, когда он связан с транспортом другого вещества по его концентрационному или электрохимическому градиенту. Это симпортный или антипортный перенос веществ.   При симпорте двух веществ ион и другая молекула (или ион) связываются одновременно с одним переносчиком прежде, чем произойдёт конформационное изменение этого переносчика. Так как ведущее вещество перемещается по градиенту концентрации или электрохимическому градиенту, управляемое вещество вынуждено перемещаться против своего градиента.   Ионы натрия являются обычно ведущими веществами в системах симпорта клеток животного. Высокий электрохимический градиент этих ионов создаётся натрий-калиевым насосом. Управляемыми веществами являются сахара, аминокислоты и некоторые другие ионы. Например, при всасывании питательных веществ в желудочно-кишечном тракте глюкоза и аминокислоты поступают из клеток тонкой кишки в кровь путём симпорта с ионами натрия. После фильтрации первичной мочи в почечных гломерулах, эти вещества возвращаются в кровь той же системой вторично-активного транспорта.

Эндоцитоз и экзоцитоз

Макромолекулы - белки и нуклеиновые кислоты - не могут проникнуть через плазматическую мембрану с помощью механизмов транспорта, рассмотренных выше, из-за своих больших размеров. При трансмембранном транспорте больших молекул сама плазматическая мембрана подвергается согласованным перемещениям, вследствие которых часть жидкой внеклеточной поглощается (эндоцитоз) или часть внутренней среды клетки выделяется (экзоцитоз).   В процессе эндоцитоза плазматическая мембрана окружает часть внешней среды, формируя вокруг неё оболочку, в результате чего образуется везикула, которая поступает внутрь клетки. При пиноцитозе образуются небольшие, заполненные жидкостью везикулы. В процессе фагоцитоза формируются большие везикулы, которые содержат твердый материал, например, клетки бактерий.   При экзоцитозе транспортируемое вещество синтезируется в клетке, связывается мембраной в везикулы и экспортируется из клетки. Таким образом транспортируются из клетки специфические белки, нуклеиновые кислоты, нейромедиаторы и т.п.

17. Мембранный потенциал. Потенциал покоя (определение, формула, примерные значения) модели Доннана и Бернштейна. Равновесный потенциал. Уравнение Гольдмана-Ходжкина-Катца, уравнение Томаса.

Мембранный потенциал (МП) представляет собой разность потенциалов между наружной и внутренней поверхностями мембраны возбудимой клетки в условиях ее покоя.

Потенциа́л поко́я — мембранный потенциал возбудимой клетки (нейрона, кардиомиоцита) в невозбужденном состоянии. Он представляет собой разность электрических потенциалов, имеющихся на внутренней и наружной сторонах мембраны и составляет у теплокровных от −55 до −100 мВ[1]. У нейронов и нервных волокон обычно составляет −70 мВ.

Для того, чтобы на мембране поддерживалась разность потенциалов, необходимо, чтобы была определенная разность концентрации различных ионов внутри и снаружи клетки. (Равновесный потенциал.)

С помощью уравнения Нернста можно рассчитать равновесный трансмембранный потенциал для K+, который и определяет значение ПП. Но значение потенциала покоя полностью не совпадает с EK+, так как в создании его участвуют также ионы натрия и хлора, вернее, их равновесные потенциалы.

Уравнение Гольдмана-Ходжкина-Катца позволяет рассчитывать разность потенциалов, существующие у разных клеток между цитоплазмой и межклеточной средой в состоянии покоя и в состоянии возбуждения. Это уравнение имеет вид:

18. Потенциал действия, его свойства. Распространение потенциала действия по нервному волокну. Константа длины нервного волокна. Телеграфное уравнение.

Электрический импульс, возникающий на мембранах нервных и мышечных клеток, а также некоторых рецепторных и секреторных клеток принято называть потенциалом действия (ПД, спайком, нервным импульсом). Основная функция ПД состоит в быстрой передаче информации на большие расстояния по нервным и мышечным волокнам.

Потенциал действия характеризуется рядом свойств, к которым относятся:

1) Потенциал действия подчиняется закону “Все или ничего”, т.е. на действие подпорогового раздражителя не возникает потенциала действия. На подачу раздражителя пороговой силы генерируется потенциал действия максимальной амплитуды. Если действовать надпороговым раздражителем, то величина потенциала действия не изменяется. Однако, в месте действия стимула потенциалы действия в единицу времени генерируются чаще. На этом механизме практически основана регуляция всех функций. Например, сила мышечного сокращения зависит не от амплитуды потенциалов действия, которая практически не меняется, а определяется частотой приходящих к мышце импульсов: чем чаще импульсы поступают к мышце, тем сильнее она сокращается, и наоборот, чем меньше их количество адресуется к ней, тем с меньшей силой она сокращается.

2) Потенциал действия распространяется инкрементно, т. е. по мере удаления от места раздражения величина пика потенциала действия практически не изменяется. В свое время академик Ухтомский пытался объяснить инкрементный характер распространения возбуждения тем, что потенциал действия в месте своего нахождения черпает необходимую для распространения энергию (подпитывается подобно электрическим подстанциям), поэтому его амплитуда не уменьшается. Ухтомский сравнивал распространение потенциала действия подобно горению полоски пороха или бикфордова шнура: они полностью сгорают, так как энергия для горения черпается в месте вспышки.

3) Потенциал действия имеет период полной невозбудимости (абсолютный рефракторный период). Если в этот момент наносить раздражение максимальной силы, то ответная реакция на него не последует.

4) Потенциал действия не способен к суммации.

Однако, возбуждение характеризуется не только генерацией электрических процессов, при этом меняется температура и метаболизм тканей.

Перечислим основные изменения обмена веществ в тканях, которые имеют место при возбуждении:

При возбуждении в тканях усиливается синтез и распад жиров, углеводов и белков.

Синтезируются и выделяются биологически активные вещества типа медиаторов (ацетилхолин, норадреналин, серотонин, РНК, …).

Происходит распад и ресинтез макроэргических соединений, источников энергии (АТФ, АДФ, креатинфосфат, …).

Увеличиваются анаэробные процессы, ведущие к накоплению недоокисленных продуктов.

Усиливаются аэробные процессы, ведущие к увеличению потребления тканями кислорода и выделению большего количества углекислого газа.

При передаче информации между различными участками нервной системы, отстоящими друг от друга на значительные расстояния, необходимо распространение нервных импульсов по аксонам нейронов. Скорость проведения зависит от толщины и наличия миелиновой оболочки. Миелиновая оболочка нервных волокон выполняет изолирующую функцию, обеспечивает более экономное и быстрое проведение возбуждения.

Проведение возможно только при наличии на всем протяжении или ограниченных, но повторяющихся участках волокна потенциалзависимых ионных каналов, ответственных за формирование новых ПД. В распространении ПД можно выделить два этапа: этап распространения электрического поля, которое снижает МП (мембранный потенциал), и этап генерации новых ПД в новых участках нервного волокна.

В зависимости от расположения и концентрации ионных каналов в мембране нервного волокна имеются два варианта проведения ПД: непрерывный и сальтаторный.

Непрерывное проведение ПД происходит в безмиелиновых нервных волокнах, имеющих равномерное распределение потенциалзависимых ионных каналов по всей длине волокна, которое участвует в генерации ПД. Проведение нервного импульса начинается с распространения электрического поля. Возникший ПД за счет электрического поля деполяризует мембрану соседнего участка до критического уровня на постоянную длины мембраны. Это означает, что на этом участке одновременно генерируются новые ПД, обусловленные движением ионов Na+ в клетку и ионов К+ из клетки. Число одновременно возникающих ПД ограничивается длиной возбужденного участка. ПД возникают рядом друг с другом в непосредственной близости. Причем сами ПД не перемещаются. Они исчезают там, где возникают. Главную роль в возникновении новых ПД играет передний ПД. Вспомогательную роль в генерации новых ПД в невозбужденных участках нервного волокна играют соседние ПД, так как их электрическое поле суммируется с электрическим полем переднего ПД. Таким образом, непрерывное распространение нервного импульса идет через генерацию новых ПД по эстафете, когда каждый участок мембраны сначала выступает как раздражаемый электрическим полем, а затем как раздражающий (в результате формирования в нем новых ПД).

Сальтаторное проведение ПД по миелинизированным волокнам является эволюционно более поздним механизмом. Оно происходит в волокнах, для которых характерна концентрация потенциалзависимых ионных каналов только в небольших участках мембраны. В области миелиновых муфт, обладающих хорошими изолирующими свойствами, потенциалзависимых каналов нет, поэтому ПД здесь не возникают. Участок нервного волокна, покрытый миелиновой муфтой, в механизме проведения потенциала действия играет роль изолятора. В этих условиях ПД, возникший в одном перехвате Ранвье, за счет электрического поля деполяризует мембрану соседних перехватов до критического уровня, что приводит к возникновению в них новых ПД, то есть возбуждение проводится скачкообразно от одного перехвата к другим. Так как, Nа+- каналы начинают открываться при достижении деполяризации клеточной мембраны 50%-ов, а постоянная длины мембраны миелинизированного волокна составляет 5 мм, то электрическое поле ПД на данном расстоянии сохраняет 37% своей амплитуды и может деполяризовать мембрану до критического уровня не только соседнего перехвата, но и вплоть до пятого. Поэтому возбуждение распространяется очень быстро по всей длине волокна. При этом ионы движутся только перпендикулярно относительно длины волокна. Электрическое поле потенциалов действия, возникших сзади переднего ПД, суммируется с его электрическим полем, так как и при непрерывном распространении возбуждения. Следовательно, сальтаторное проведение возбуждения обусловлено генерацией новых ПД по эстафете, когда каждый перехват Ранвье сначала выступает как раздражаемый электрическим полем, а затем как раздражающий соседние перехваты.

Константа длины – это расстояние, на котором местный ток сохраняет пороговое значение, то есть способен вызывать образование ПД на следующем участке нервного волокна.

Телегра́фные уравне́ния — пара линейных дифференциальных уравнений, описывающих распределение напряжения и тока по времени и расстоянию в линиях электрической связи.

19. Внешние электрические поля органов и тканей. Понятие об электрографии. Представление об эквивалентном электрическом генераторе.

2)Электрография – метод исследования работы органов и тканей, основанный на регистрации во времени разности потенциалов, возникающей на поверхности тела при функционировании органов и тканей

В электрографии существуют две фундаментальные задачи:

1)прямая задача -расчет распределения электрического потенциала на заданной поверхности тела по заданным характеристикам эквивалентного генератора;

2)обратная задача —определение характеристик эквивалентного генератора (изучаемого органа) по измеренным потенциалам на поверхности тела.

Электрограмма – временная зависимость разности потенциалов, возникающей при функционировании органов или тканей

Виды электрограмм:

1. Электрокардиограмма (электрограмма сердца) – ЭКГ,

2. Электромиограмма (электрограмма мышц) – ЭМГ,

3. Электроэнцефалограмма (электрограмма головного мозга) -ЭЭГ,

4. Электроретинограмма (электрограмма сетчатки глаза) – ЭРГ.

5. Кожногальваническая реакция

3) Модель электрической активности органов - эквивалентный токовый генератор

Сила тока, создаваемая генератором: I =

ε-ЭДС источника тока,

R – сопротивление среды (межклеточной жидкости),

r – внутреннее сопротивление источника тока (сопротивление мембраны и внутриклеточной жидкости)

4)Токовый диполь – это система из положительного и отрицательного полюсов (истока и стока электрического тока), находящихся на некотором расстоянии друг от друга в проводящей среде

Дипольный момент: D=I*L

I – сила тока, L – плечо диполя

Токовые диполи:

Точечные диполи (занимают бесконечно малый объем)

Конечные диполи

5)Физические основы электрокардиографии

Возбужденный участок миокарда можно представить как совокупность большого числа точечных токовых диполей.

Тогда электрический потенциал, регистрируемый в некоторой точке равен:      n ...

= *D1*cos α1+ *cos α2…..

Т.о. электрическую активность миокарда заменяют действием одного токового диполя - эквивалентного токового диполя сердца: =

Потенциал внешнего электрического поля сердца: = *D0*cos α

6) Электромиография – регистрация электрических потенциалов скелетных мышц. Ее используют как метод исследования нормальной и нарушенной функции двигательного аппарата человека и животных. Электромиография включает методики по изучению электрической активности мышц в состоянии покоя, при произвольных, непроизвольных и вызванных искусственными раздражениями сокращениях.

С помощью электромиографии изучают функциональное состояние и функциональные особенности мышечных волокон, двигательных единиц, нервно-мышечной передачи, нервных стволов, сегментарного аппарата спинного мозга, изучают координацию движений, выработку двигательного навыка при различных видах работы и спортивных упражнениях, при утомлении.

20. Действие токов и полей на ткани организма. Методы физиотерапии: гальванизация, электрофорез, диатермия, электросон, УВЧ-терапия, индуктотермия. Тепловой эффект при воздействии переменным высокочастотным током, переменным высокочастотным электрическим полем и магнитным полем (формулы).

1)Постоянный электрический ток оказывает раздражающее действие на ткани организма. Т.е. под действием постоянного тока происходит перемещение (вдоль силовых линии поля) имеющихся в тканях заряженных частиц, главным образом ионов тканевых электролитов. При этом вследствие различной подвижности ионов, а главным образом задержки и накопления их у полупроницаемых мембран в тканевых элементах и прежде всего внутри клетки и в окружающей ее тканевой жидкости происходит изменение обычной концентрации ионов той или иной природы. Изменение ионной среды может вызвать изменение функционального состояния клеток в сторону возбуждения или торможения их деятельности

2)Методы физиотерапии:

1. Гальванизация - метод лечебного воздействия постоянным током небольшой величины (напряжение 60—80 В).

2. Электрофорез – метод введения лекарственных веществ в организм (ионы йода, металлы, пенициллин и др.) при помощи постоянного электрического тока. Препарат вводится с электрода, знак которого имеют вводимые ионы: с катода – отрицательные ионы, с анода – положительные ионы. В физиотерапии используют токи, находящиеся между порогом ощутимого значения и порогом неотпускающего значения. Порогом ощутимого значения называют наименьшую силу тока, раздражающее действие которого ощущает человек. Порогом неотпускающего значения называют наименьшую силу тока, при которой человек не может самостоятельно освободиться от проводника (источника тока), так как происходит непроизвольное сгибание сустава.

3.УВЧ-терапия – бесконтактный метод физиотерапии, основанный на использовании переменного электрического поля ультравысокой частоты. Используется для глубокого прогрева тканей- диэлектриков

4.Диатермия – метод физиотерапии, основанный на воздействии на биологические ткани переменного электрического тока высокой частоты (1-2 МГц) , небольшого напряжения (150-200 В) и большой силы (2 А)

5.Индуктотермия – метод физиотерапии, основанный на воздействии на биологические ткани переменным магнитным полем высокой частоты (10-15 МГц). При индуктотермии больше тепла образуется в тканях с хорошей электропроводностью (низким сопротивлением), т.е. в жидких средах (кровь, лимфа) и хорошо кровоснабжающихся тканях (мышцы, печень и др.)

3) Действие переменного электрического тока

На частотах свыше 100 кГц раздражающее действие переменного тока полностью прекращается. Это связано прежде всего с тем, что на таких частотах воротные процессы ионных каналов не успевают срабатывать и внутриклеточный состав не изменяется. Основным первичным эффектом в этом случае является тепловое воздействие. (Постоянный ток, токи НЧ и ЗЧ для нагревания тканей непригодны, так как их использование при больших значениях может привести к электролизу и разрушению).

Удельная тепловая мощность, выделяющаяся в тканях, определяется по формуле : q = j2p, где ρ - удельное сопротивление ткани, а j - плотность тока в ней. Сила тока, а следовательно, и его плотность, зависят от импеданса ткани, который, в свою очередь, зависит от частоты. Поэтому подбором частоты тока можно добиться селективного теплового воздействия на ткани нужного вида.

Действие переменного электрического поля (УВЧ)

Переменное электромагнитное поле вызывает колебательное движение ионов (переменный ток) и крутильные колебания дипольных молекул. Эти процессы сопровождаются выделением теплоты.

Воздействие поля УВЧ на проводник

Удельная тепловая мощность, выделяющаяся в проводнике вследствие колебательного движения ионов, определяется формулой

где Е - напряженность электрического поля внутри вещества, ρ - удельное сопротивление вещества.

На тех частотах, которые используются в медицинских процедурах (УВЧ), удельная тепловая мощность определяется формулой

где U - действующее значение напряжения на электродах, создающих переменное электрическое поле, k - некоторый геометрический коэффициент (см. задачу 2).

Воздействие поля УВЧ на диэлектрик

Приводит к выделению теплоты (диэлектрические потери).

Количество выделившейся теплоты зависит от угла δ, на который колебания молекул отстают по фазе от колебаний напряженности поля. Угол δ называется углом диэлектрических потерь.

Удельная тепловая мощность, выделяющаяся вследствие диэлектрических потерь, определяется соотношением

Здесь ε - диэлектрическая проницаемость вещества; Е - действующее значение напряженности поля в диэлектрике.

Величина тангенса угла диэлектрических потерь определяется природой диэлектрика и зависит от частоты. В областях α-, β-, γ-дисперсии (см. раздел 15.6) эта величина испытывает резкие изменения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]