- •Правила дифференцирования.
- •Свойства производной.
- •12.Числовые характеристики выборки: выборочное среднее, дисперсия, выборочное ско (смысл, формулы, размерность).
- •Свойства точечной оценки:
- •14. Биологические мембраны. Строение, функции, физические свойства мембран.
- •Свойства биологических мембран:
- •Физические свойства биологических мембран:
- •15. Транспорт веществ через мембраны. Математическое моделирование процессов переноса вещества через мембрану клетки (диффузия и электродиффузия).
- •Активный транспорт.
- •Свободная диффузия
- •Облегченная диффузия
- •Электродиффузия
- •16. Активный транспорт вещества через мембрану клетки.
- •Вторично-активный транспорт
- •Эндоцитоз и экзоцитоз
- •17. Мембранный потенциал. Потенциал покоя (определение, формула, примерные значения) модели Доннана и Бернштейна. Равновесный потенциал. Уравнение Гольдмана-Ходжкина-Катца, уравнение Томаса.
- •Переменное магнитное поле
- •Формула тонкой линзы:
- •Геометрическая оптика - это раздел оптики, изучающий законы распространения света в прозрачных средах и отражения света от зеркальных или полупрозрачных поверхностей.
- •25.Светопреломляющая и световоспринимающая оптическая система глаза. Ее недостатки и их устранение.
- •Закон преломления гласит:
- •Применение полного внутреннего отражения.
- •28.Поляризация света. Свет естественный и поляризованный. Оптически активные вещества. Измерение концентрации раствора по углу поворота плоскости поляризации (поляриметрия).
- •29.Особенности излучения и поглощения энергии атомами и молекулами. Спектры (излучения и поглощения) атомарные, молекулярные и спектры кристаллов. Спектрометрия и ее применение в медицине.
- •Масс-спектрометрия: оборудование, назначение, возможности
- •32.Индуцированное излучение. Его источники. Устройство и принцип работы твердотельных, газовых, полупроводниковых и жидкостных лазеров и их применение в медицине.
- •33.Механические колебания (свободные: незатухающие и затухающие, вынужденные, автоколебания). Их характеристики и математическое описание.
- •*Физические характеристики звука
- •36.Ультразвук. Источники и приемники ультразвука. Применение ультразвука в медицине.
- •*Источники и приёмники ультразвука
- •*Использование уз в медицине:
- •1)Диагностика (акушерство; офтальмология; кардиология; неврология новорожденных и младенцев; исследование внутренних органов)
- •Использование в терапии
- •Ультразвуковая хирургия
- •Бета-излучение
- •Защита от рентгеновских лучей -
- •Применение рентгеновского излучения в медицине
- •2) Связь мощности экспозиционной дозы с активностью радиоактивного препарата:
2) Связь мощности экспозиционной дозы с активностью радиоактивного препарата:
Из источника γ-фотоны вылетают по всем направления. Число этих фотонов, пронизывающих 1м2 поверхности некоторой сферы в 1с, пропорционально активности А и обратно пропорциональна площади поверхности сферы (4πr2)/ Мощность экспозиционной дозы (Х/t) в объеме (V) зависит от числа фотонов, так как именно они вызывают ионизацию.
-излучения– слабая проникающая способность, способность к ионизации.
-частицы вызывают ионизацию и проникают в ткани организма на глубину 10-15.
-излучение– вызывает ионизацию и обладают высокой проникающей способностью.
Проникающая способность для альфа и бета излучений определяется как расстояние пройденное частицей до того момента когда его энергия сравняется с тепловой. Чем больше проникающая способность тем меньше ионизирующаяся способность
3) Различают два вида эффекта воздействия на организм ионизирующих излучений: соматический и генетический. При соматическом эффекте последствия проявляются непосредственно у облучаемого, при генетическом - у его потомства. Соматические эффекты могут быть ранними или отдалёнными. Ранние возникают в период от нескольких минут до 30-60 суток после облучения. К ним относят покраснение и шелушение кожи, помутнение хрусталика глаза, поражение кроветворной системы, лучевая болезнь, летальный исход. Отдалённые соматические эффекты проявляются через несколько месяцев или лет после облучения в виде стойких изменений кожи, злокачественных новообразований, снижения иммунитета, сокращения продолжительности жизни.
Для биологического действия ионизирующих излучений характерен ряд общих закономерностей:
1) Глубокие нарушения жизнедеятельности вызываются ничтожно малыми количествами поглощаемой энергии.
2) Биологическое действие ионизирующих излучений не ограничивается подвергнутым облучению организмом, но может распространяться и на последующие поколения, что объясняется действием на наследственный аппарат организма.
3) Для биологического действия ионизирующих излучений характерен скрытый (латентный) период, т. е. развитие лучевого поражения наблюдается не сразу. Продолжительность латентного периода может варьировать от нескольких минут до десятков лет в зависимости от дозы облучения, радиочувствительности организма. Так, при облучении в очень больших дозах (десятки тыс. рад) можно вызвать «смерть под лучом», длительное же облучение в малых дозах ведёт к изменению состояния нервной и других систем, к возникновению опухолей спустя годы после облучения.
4)Способы защиты от ионизирующего излучения
Защита от негативных последствий излучения и некоторые способы уменьшения дозы облучения указаны ниже. Различают три вида защиты: защита временем, расстоянием и материалом.
Защита временем и расстоянием
Для точечного источника экспозиционная доза определяется соотношением
из которого видно, что она прямо пропорциональна времени и обратно пропорциональна квадрату расстояния до источника.
Отсюда следует естественный вывод: для уменьшения поражающего радиационного действия необходимо находиться как можно дальше от источника излучения и, по возможности, меньшее время.
Защита материалом
Если расстояние до источника радиации и время облучения невозможно выдержать в безопасных пределах, то необходимо обеспечить защиту организма материалом. Этот способ защиты основывается на том, что разные вещества по-разному поглощают попадающие на них всевозможные ионизирующие излучения. В зависимости от вида излучения применяют защитные экраны из различных материалов:
|
• альфа-частицы - бумага, слой воздуха толщиной несколько сантиметров;
• бета-частицы - стекло толщиной несколько сантиметров, пластины из алюминия;
• рентгеновское и гамма-излучения - бетон толщиной 1,5-2 м, свинец (эти излучения ослабляются в веществе по экспоненциальному закону; нужна большая толщина экранирующего слоя; в рентгеновских кабинетах часто используют резиновый просвинцованный фартук);
• поток нейтронов - замедляется в водородсодеожащих веществах, например воде.
Для индивидуальной защиты органов дыхания от радиоактивной пыли используются респираторы.
