- •Правила дифференцирования.
- •Свойства производной.
- •12.Числовые характеристики выборки: выборочное среднее, дисперсия, выборочное ско (смысл, формулы, размерность).
- •Свойства точечной оценки:
- •14. Биологические мембраны. Строение, функции, физические свойства мембран.
- •Свойства биологических мембран:
- •Физические свойства биологических мембран:
- •15. Транспорт веществ через мембраны. Математическое моделирование процессов переноса вещества через мембрану клетки (диффузия и электродиффузия).
- •Активный транспорт.
- •Свободная диффузия
- •Облегченная диффузия
- •Электродиффузия
- •16. Активный транспорт вещества через мембрану клетки.
- •Вторично-активный транспорт
- •Эндоцитоз и экзоцитоз
- •17. Мембранный потенциал. Потенциал покоя (определение, формула, примерные значения) модели Доннана и Бернштейна. Равновесный потенциал. Уравнение Гольдмана-Ходжкина-Катца, уравнение Томаса.
- •Переменное магнитное поле
- •Формула тонкой линзы:
- •Геометрическая оптика - это раздел оптики, изучающий законы распространения света в прозрачных средах и отражения света от зеркальных или полупрозрачных поверхностей.
- •25.Светопреломляющая и световоспринимающая оптическая система глаза. Ее недостатки и их устранение.
- •Закон преломления гласит:
- •Применение полного внутреннего отражения.
- •28.Поляризация света. Свет естественный и поляризованный. Оптически активные вещества. Измерение концентрации раствора по углу поворота плоскости поляризации (поляриметрия).
- •29.Особенности излучения и поглощения энергии атомами и молекулами. Спектры (излучения и поглощения) атомарные, молекулярные и спектры кристаллов. Спектрометрия и ее применение в медицине.
- •Масс-спектрометрия: оборудование, назначение, возможности
- •32.Индуцированное излучение. Его источники. Устройство и принцип работы твердотельных, газовых, полупроводниковых и жидкостных лазеров и их применение в медицине.
- •33.Механические колебания (свободные: незатухающие и затухающие, вынужденные, автоколебания). Их характеристики и математическое описание.
- •*Физические характеристики звука
- •36.Ультразвук. Источники и приемники ультразвука. Применение ультразвука в медицине.
- •*Источники и приёмники ультразвука
- •*Использование уз в медицине:
- •1)Диагностика (акушерство; офтальмология; кардиология; неврология новорожденных и младенцев; исследование внутренних органов)
- •Использование в терапии
- •Ультразвуковая хирургия
- •Бета-излучение
- •Защита от рентгеновских лучей -
- •Применение рентгеновского излучения в медицине
- •2) Связь мощности экспозиционной дозы с активностью радиоактивного препарата:
36.Ультразвук. Источники и приемники ультразвука. Применение ультразвука в медицине.
*Источники и приёмники ультразвука
Ультразвуком (УЗ) называют механические колебания и волны, частоты которых более 20 кГЦ. Верхний предел ультразвуковых частот условно считают равным 109 1010 Гц. Этот предел определяется межмолекулярными расстояниями и поэтому зависит от агрегатного состояния вещества, в котором распространяется ультразвуковая волна. Источником ультразвука могут быть как естественные явления, так и искусственные установки - генераторы ультразвука. Естественными источниками УЗ являются животные, издающие ультразвук (кузнечики, саранча, сверчки, летучие мыши, дельфины). Все эти животные воспроизводят УЗ и воспринимают его специальными рецепторными аппаратами. Например, летучие мыши издают УЗ с частотой 70-80кГц. Издаваемые ими колебания отражаются от окружающих предметов и воспринимаются специальными механорецепторами как своеобразные сигналы о лежащих на пути препятствиях. С помощью своего ультразвукового локатора летучие мыши очень точно ориентируются в полете. Ультразвук воспринимают не только летучие мыши и некоторые насекомые, но и дельфины, киты, кошки, собаки, грызуны, лягушки. Их слуховой аппарат настроен на более широкий диапазон звуковых колебаний
Источником ультразвука может быть и неживая природа: шум ветра, водопады, морской прибой. Ультразвук возникает также при работе ракетных двигателей, некоторых двигателей и станков.
В технике ультразвук получают с помощью устройств, называемые УЗ-излучателями (генераторы УЗ). Наибольшее распространение получили электромеханические излучатели, основанные на явлениях магнитострикционного эффекта и обратного пьезоэлектрического эффекта.
Для регистрации и анализа ультразвуков применяются пьезоэлектрические и магнитострикционные датчики - приёмники ультразвука.
*Использование уз в медицине:
1)Диагностика (акушерство; офтальмология; кардиология; неврология новорожденных и младенцев; исследование внутренних органов)
Ультразвуковая локация. В процессе такого исследования регистрируются отраженные от границ сред с различными акустическими плотностями импульсы. При помощи перемещаемого датчика можно установить размер, расположение и форму исследуемого объекта.
Просвечивание. Этот метод основан на том, что различные ткани человеческого организма по-разному поглощают ультразвук. Во время исследования какого-либо внутреннего органа в него направляют волну с определенной интенсивностью, после чего специальным датчиком регистрируют прошедший сигнал с обратной стороны. Картина сканируемого объекта воспроизводится на основе изменения интенсивности сигнала на «входе» и «выходе». Полученная информация обрабатывается и преобразуется компьютером в виде эхограммы (кривой) или сонограммы – двухмерного изображения.
Допплер-метод. Это наиболее активно развивающийся метод диагностики, в котором используются как импульсный, так и непрерывный ультразвук. Допплерография широко применяется в акушерстве, кардиологии и онкологии, так как позволяет отслеживать даже самые незначительные изменения в капиллярах и небольших кровеносных сосудов.
