- •А.Д. Гетман
- •Рекомендованоучебно-методическимобъединением Министерства образования Российской Федерации по педагогическому образованию
- •Вкачествеучебникадлястудентов высших учебных заведений
- •Введение
- •Глава I. Предмет и значение логики Глава I предмет и значение логики
- •§ 1. Формы познания
- •Глава I. Предмет и значение логики
- •§ 2. Понятие логической формы и логического закона
- •Глава I. Предмет и значение логики
- •Глава I. Предмет и значение логики
- •§ 3. Логика и язык
- •Глава I. Предмет и значение логики 19
- •Глава I. Предмет и значение логики
- •Глава I.Предмет изначение логики 23
- •Глава I. Предмет и значение логики 27
- •Глава II понятие
- •§ 1. Понятие как форма мышления
- •§ 2. Отношения между понятиями
- •Глава II. Понятие 35
- •§ 3. Определение понятий
- •Глава II. Понятие
- •Глава II. Понятие
- •Глава II. Понятие 41
- •Глава II. Понятие 43
- •Глава II. Понятие 45
- •§ 4. Деление понятий. Классификация
- •Правила деления понятий
- •Глава II. Понятие 47
- •Глава II. Понятие 49
- •Глава II, понятие
- •§ 5. Ограничение и обобщение понятий
- •Глава II. Понятие 53
- •Глава II. Понятие 55
- •Глава II. Понятие 57
- •Глава II. Понятие 59
- •Глава III суждение
- •§ 1. Общая характеристика суждения
- •Глава III. Суждение
- •§ 2. Простое суждение
- •Глава III. Суждение
- •Суждения свойства (атрибутивные).
- •Суждения с отношениями.
- •Суждения существования (экзистенциальные).
- •Глава III. Суждение 67
- •§ 3. Сложное суждение и его виды. Исчисление высказываний
- •Глава III. Суждение 71
- •Глава III, суждение 73
- •Глава III. Суждение 75
- •§ 4. Выражение логических связок (логических постоянных) в естественном языке
- •Глава III. Суждение 77
- •Глава III. Суждение 79
- •Глава III. Суждение 81 § 5. Отношения между суждениями по значениям
- •Глава III. Суждение 83
- •§ 6. Деление суждений по модальности
- •Глава III. Суждение 85
- •Глава III. Суждение 87
- •Глава III. Суждение 89
- •Глава IV. Законы (принципы) правильного мышления
- •Глава IV
- •Законы (принципы)
- •Мышления
- •§ 1. Понятие логического закона
- •§ 2. Законы логики и их роль в познании
- •Глава IV. Законы (принципы) правильного мышления
- •Глава IV. Законы (принципы) правильного мышления
- •§ 3. Использование формально-логических законов в процессе обучения
- •Глава IV, законы (принципы) правильного мышления
- •Глава IV. Законы (принципы) правильного мышления 111
- •Глава IV. Законы (принципы) правильного мышления
- •Глава IV, законы (принципы) правильного мышления
- •Глава V умозаключение
- •§ 1. Общее понятие об умозаключении
- •Глава V. Умозаключение
- •Глава V, умозаключение § 2. Дедуктивные умозаключения
- •Глава V. Умозаключение
- •§ 3. Выводы из категорических суждений посредством их преобразования
- •Глава V. Умозаключение
- •Глава V. Умозаключение 129
- •§ 4. Простой категорический силлогизм1
- •Глава V. Умозаключение 131
- •Глава V. Умозаключение
- •§ 5. Сокращенный категорический силлогизм (энтимема)
- •§ 6. Сложные и сложносокращенные силлогизмы (полисиллогизмы, сориты, эпихейрема)
- •Глава V. Умозаключение
- •§ 7. Условные умозаключения
- •Утверждающий модус (modus ponens).
- •Отрицающий модус (modus tollens).
- •Глава V. Умозаключение
- •Первый вероятностный модус
- •Глава V. Умозаключение 145
- •§ 8. Разделительные умозаключения
- •Глава V. Умозаключение
- •§ 9. Условно-разделительные умозаключения
- •Глава V умозаключение
- •ГлаваV.Умозаключение
- •§ 10. Сокращенные условные, разделительные и условно-разделительные умозаключения
- •В умозаключении пропущена одна из посылок
- •Простая контрапозиция.
- •Сложная контрапозиция.
- •ГлаваV.Умозаключение
- •§ 11. Непрямые (косвенные) выводы
- •2. Правило сведения «к абсурду»
- •Правило непрямого вывода — рассуждение «от противного» (противоречащего)
- •§ 12. Индуктивные умозаключения и их виды
- •Глава V. Умозаключение
- •Глава V. Умозаключение
- •Глава V. Умозаключение
- •§ 13. Индуктивные методы установления причинных связей
- •Глава V. Умозаключение 171
- •Глава V. Умозаключение
- •§ 14. Дедукция и индукция в учебном процессе
- •Глава V. Умозаключение 75
- •Глава V. Умозаключение
- •Глава V. Умозаключение
- •Глава V. Умозаключение
- •Глава V. Умозаключение
- •Глава V. Умозаключение
- •Глава VI. Логические основы теории аргументации 187
- •Глава VI логические основы теории аргументации
- •§ 1. Понятие доказательства
- •§ 2. Прямое и непрямое (косвенное) доказательства
- •Глава VI. Логические основы теории аргументации
- •§ 3. Понятие опровержения
- •Опровержение тезиса (прямое и косвенное)
- •Глава VI. Логические основы теории аргументации
- •Критика аргументов
- •§ 4. Правила доказательного рассуждения. Логические ошибки, встречающиеся в доказательствах и опровержениях
- •Глава VI. Логические основы теории аргументации
- •Глава VI. Логические основы теории аргументации
- •Нарушение правил умозаключений (дедуктивных, индуктивных, по аналогии):
- •Глава VI. Логические основы теории аргументации 201
- •§ 5. Понятие о софизмах и логических парадоксах
- •«Из точки на прямую можно опустить два перпендикуляра»;
- •«Всякая окружность имеет два центра»;
- •Глава VI. Логические основы теории аргументации 20 3
- •§ 6. Искусство ведения дискуссии
- •Глава V). Логические основы теории аргументации 20 5
- •Глава VI. Логические основы теории аргументации 20 9
- •Глава VI. Логические основы теории аргументации
- •Глава VI. Логические основы теории аргументации 21 3
- •VI. Логические основы теории аргументации 21 5
- •Глава VII аналогия и гипотеза. Их роль в учебном процессе
- •§ 1. Умозаключение по аналогии и его виды
- •Глава VII. Аналогия и гипотеза. Их роль в учебном процессе 22 1
- •§ 2. Гипотеза и ее виды
- •Глава VII. Аналогия и гипотеза. Их роль в учебном
- •§ 3. Построение гипотез
- •Глава VII. Аналогия и гипотеза. Их роль в учебном процессе 229
- •Глава VIII роль логики в процессе обучения § 1. Логическая структура вопроса
- •§ 2. И в.А.Сухомлинский о формировании логического мышления в процессе обучения в начальной школе
- •§ 3. Развитие логического мышления младших
- •Глава VIII. Роль логики в процессе обучения 247
- •§ 4. Развитие логического мышления учащихся в процессе обучения в средних и старших классах
- •Глава VIII. Роль логики в процессе обучения 24 9
- •Глава IX методика преподавания логики
- •§ 1. Формирование логической культуры как условие гуманитаризации педагогического образования и специфика методики изучения логики в педвузах и педуниверситетах
- •Глава IX. Методика преподавания логики ... 25 3
- •Глава IX. Методика преподавания логики ... 25 5
- •Глава IX. Методика преподавания логики ...
- •Глава IX. Методика преподавания логики ... 25 9
- •Глава IX. Методика преподавания логики ... 26 1
- •Глава IX. Методикапреподаваниялогики ...
- •Глава IX. Методика преподавания логики ... 26 9
- •Глава IX. Методика преподавания логики ... 271
- •Глава IX. Методика преподавания логики ...
- •Глава IX, методика преподавания логики ...
- •Глава IX. Методика преподавания логики ...
- •Глава IX. Методика преподавания логики ... 27 9
- •IX. Методика преподавания 287
- •Глава IX. Методика преподавания логики ... 28 9
- •Глава IX. Методика преподавания логики ... 29 1
- •Глава IX. Методика преподавания логики ... 29 7
- •§ 2. Специфика методики преподавания логики в средних педагогических учебных заведениях: педколледжах, педклассах (из опыта работы)
- •Глава IX. Методика преподавания логики... 301
- •Глава IX. Методика преподаваниялогики ... 303
- •Кроссворд
- •Глава IX. Методика преподавания логики ....
- •Продолжите ряд чисел.
- •Глава IX. Методика преподавания 309
- •8. Анаграммы и исключите лишнее слово.
- •Выберите нужную фигуру из пронумерованных.
- •Глава IX. Методика преподавания логики ... 313
- •Вставьте слово, которое служило бы окончанием первого слова и началом второго. Прик(...)ья
- •Решите анаграммы и исключите лишнее слово.
- •Глава IX. Методика преподавания
- •Глава IX. Методика преподавания 317
- •§ 3. Методика повышения логической культуры учащихсяначальнойисреднейшколы(изопыта работы)
- •Глава IX. Методика преподаваниялогики ...
- •Глава X. Этапы развития логики как науки и основные направления ... 333
- •Глава X
- •Этапы развитиялогики какнауки
- •И основные направления современной
- •§ 1. Краткие сведения из истории классической и неклассических логик
- •Глава X, этапы развития логики как науки и основные направления ...
- •Глава X. Этапы развития логики как науки и основные направления ... 339
- •Глава X. Этапы развития логики как науки и основные направления ...
- •Глава X. Этапы развития логики как науки и основные направления ... 343
- •Глава X. Этапы развития логики как науки и основные направления ... 34 5
- •Глава X. Этапы развития логики как науки и основные направления ... 347
- •Глава X. Этапы развития логики как науки и основные направления ... 349
- •Глава X. Этапы развития логики как науки и основные направления ...
- •Глава X, этапы развития логики как науки и основные направления ... 35 3
- •Глава X. Этапы развития логики как науки и основные направления ... 357
- •Глава X. Этапы развития логики как науки и основные направления ... 359
- •§ 2. Развитие логики в связи с проблемой обоснования математики
- •Глава X. Этапы развития логики как науки и основные направления ... 36 3
- •Глава X. Этапы развития логики как науки и основные направления ... 36 5
- •§ 3. Интуиционистская логика
- •Глава X. Этапы развития логики как науки и основные направления ... 367
- •Глава X. Этапы развития логики как науки и основные направления ... 369
- •§ 4. Конструктивные логики
- •Глава X. Этапы развития логики как науки и основные направления ... 371
- •Глава X. Этапы развития логики как науки и основные направления ... 37 3
- •§ 5. Многозначные логики
- •Отрицание Лукасевича
- •Глава X. Этапы развития логики как науки и основные направления ... 375
- •Глава X. Этапы развития логики как науки и основные направления ... 377 Импликация Гейтинга
- •Отрицание Гейтинга
- •Глава X. Этапы развития логики как науки и основные направления ... 379
- •Глава X. Этапы развития логики как науки и основные направления ... 381
- •Глава X. Этапы развития логики как науки и основные направления ... 383
- •§ 6. Законы исключенного третьего и непротиворечия в неклассических логиках (многозначных, интуиционистской, конструктивных)
- •Глава X. Этапы развития логики как науки и основные направления ... 385
- •§ 7. Модальные логики
- •§ 6 «Деление суждений по модальности»). Модальные суждения рассматри- ваются в специальном направлении современной формальной логики — в модальной логике.
- •Глава X. Этапы развития логики как науки и основные направления ...
- •§ 8. Положительные
- •Глава X. Этапы развития логики как науки и основные направления ... 393
- •§ 9. Паранепротиворечивая логика
- •Глава X. Этапы развития логики как науки и основные направления ... 39 5
- •Глава X, этапы развития логики как науки и основные направления ... 397
- •Заключение
- •Понятие.
- •Равнозначности.
- •Суждение.
- •Понятие.
- •Умозаключение.
- •Логические основы теории аргументации.
- •Рекомендуемая
- •Учебная литература
- •II.Популярнаялитература
- •Литература по педагогическим приложениям
- •V «или или ь» — строгая дизъюнкция.
- •Система Аккермана
- •Содержание
- •А.Д. Гетманова логика
- •123022, Г. Москва, Столярный пер., 14, подъезд 2, тел. (095) 253-46-82
- •Отпечатано с готовых диапозитивов в гуп пик
- •420066, Г. Казань, ул. Декабристов, 2.
§ 12. Индуктивные умозаключения и их виды
Логическая природа индукции
Дедуктивные умозаключения позволяют выводить из истинных посы- лок при соблюдении соответствующих правил истинные заключения. Ин-
Глава V. Умозаключение
дуктивные умозаключения обычно дают нам не достоверные, а лишь прав- доподобные заключения.
В
определении индукции в логике выявляются
два подхода —
первый, осуществляемый в традиционной
(не в математической) логике, в которой
индукцией называется умозаключение
от знания меньшей степени общнос- ти к
новому знанию большей степени общности
(т.е. от отдельных
частных случаев
переходим к
общему суждению).
При втором подходе,
прису- щем современной математической
логике, индукцией называется умоза-
ключение, дающее вероятностное
суждение.
Общее в природе и обществе не существует самостоятельно, до и вне от- дельного, а отдельное не существует без общего; общее существует в от- дельном, через отдельное, т.е. проявляется в конкретных предметах. Поэто- му общее, существенное, повторяющееся и закономерное в предметах по- знается через изучение отдельного, и одним из средств познания общего выступает индукция. В зависимости от избранного основания выделяют индукцию полную и неполную. По другому основанию выделяют матема- тическую индукцию.
Полной индукцией называется такое умозаключение, в котором общее за- ключение обо всех элементах класса предметов делается на основании рас- смотрения каждого элемента этого класса. В полной индукции изучаются все предметы данного класса, а посылками служат единичные суждения. Например:
Земля
вращается вокруг
Солнца по
эллиптической
орбите.
вращается вокруг
Солнца по эллиптической орбите.
Юпитер вращается вокруг
по
эллиптической орбите. Сатурн
вращается вокруг
Солнца по эллиптической орбите.
Плутон вращается
вокруг Солнца
по эллиптической орбите,
Венера вращается
вокруг Солнца
по эллиптической орбите. Уран
вращается вокруг
Солнца по эллиптической орбите,
Нептун вращается вокруг
Солнца по
Меркурий вращается
вокруг Солнца
по эллиптической
Земля, Марс, Юпитер, Сатурн,
Плутон, Венера,
Нептун, Меркурий — планеты
Солнечной
Все планеты Солнечной системы вращаются вокруг Солнца по эллиптической орбите.
Посылками в полной индукции могут быть и общие суждения. Например:
Все моржи — водные млекопитающие.
Все ушастые тюлени — водные млекопитающие. Все настоящие тюлени — водные млекопитающие.
Моржи, ушастые тюлени, настоящие тюлени представляют семейство ластоногих.
Все ластоногие — водные млекопитающие.
Полная индукция дает достоверное заключение, поэтому она часто при- меняется в математических и в других самых строгих доказательствах. Что- бы использовать полную индукцию, надо выполнить следующие условия:
Точно знать число предметов или явлений, подлежащих рассмот- рению.
Убедиться, что признак принадлежит каждому элементу этого класса.
Число элементов изучаемого класса должно быть невелико.
Математическая индукция
Это
один из важнейших методов доказательства
в
основан-
ный на
аксиоме (принципе) математической
индукции. Пусть: 1) свойство А
имеет место
при п =
2)
из предположения о том,
что свойством
А обла-
дает какое-либо натуральное число п,
следует,
что этим
свойством А
обла-
дает и число
п + 1.
Тогда
делаем
заключение, что свойством А
обладает лю-
бое
натуральное
число.
Математическая индукция используется при выведении ряда формул: арифметической и геометрической прогрессий, бинома Ньютона и др.
Виды неполной индукции
Неполная
индукция применяется в тех
случаях,
когда мы,
во-первых, не можем рассмотреть все
элементы интересующего нас
класса
явлений;
если
число
объектов
либо
бесконечно,
либо
конечно,
но
точно
велико;
в-трегьих,
когда
уничтожает
объект
мер:
деревья
имеют корни»). Тогда
мы
рассматриваем не все случаи изучаемого
а
заключение
делаем
для
всех.
Например,
при
