- •А.Д. Гетман
- •Рекомендованоучебно-методическимобъединением Министерства образования Российской Федерации по педагогическому образованию
- •Вкачествеучебникадлястудентов высших учебных заведений
- •Введение
- •Глава I. Предмет и значение логики Глава I предмет и значение логики
- •§ 1. Формы познания
- •Глава I. Предмет и значение логики
- •§ 2. Понятие логической формы и логического закона
- •Глава I. Предмет и значение логики
- •Глава I. Предмет и значение логики
- •§ 3. Логика и язык
- •Глава I. Предмет и значение логики 19
- •Глава I. Предмет и значение логики
- •Глава I.Предмет изначение логики 23
- •Глава I. Предмет и значение логики 27
- •Глава II понятие
- •§ 1. Понятие как форма мышления
- •§ 2. Отношения между понятиями
- •Глава II. Понятие 35
- •§ 3. Определение понятий
- •Глава II. Понятие
- •Глава II. Понятие
- •Глава II. Понятие 41
- •Глава II. Понятие 43
- •Глава II. Понятие 45
- •§ 4. Деление понятий. Классификация
- •Правила деления понятий
- •Глава II. Понятие 47
- •Глава II. Понятие 49
- •Глава II, понятие
- •§ 5. Ограничение и обобщение понятий
- •Глава II. Понятие 53
- •Глава II. Понятие 55
- •Глава II. Понятие 57
- •Глава II. Понятие 59
- •Глава III суждение
- •§ 1. Общая характеристика суждения
- •Глава III. Суждение
- •§ 2. Простое суждение
- •Глава III. Суждение
- •Суждения свойства (атрибутивные).
- •Суждения с отношениями.
- •Суждения существования (экзистенциальные).
- •Глава III. Суждение 67
- •§ 3. Сложное суждение и его виды. Исчисление высказываний
- •Глава III. Суждение 71
- •Глава III, суждение 73
- •Глава III. Суждение 75
- •§ 4. Выражение логических связок (логических постоянных) в естественном языке
- •Глава III. Суждение 77
- •Глава III. Суждение 79
- •Глава III. Суждение 81 § 5. Отношения между суждениями по значениям
- •Глава III. Суждение 83
- •§ 6. Деление суждений по модальности
- •Глава III. Суждение 85
- •Глава III. Суждение 87
- •Глава III. Суждение 89
- •Глава IV. Законы (принципы) правильного мышления
- •Глава IV
- •Законы (принципы)
- •Мышления
- •§ 1. Понятие логического закона
- •§ 2. Законы логики и их роль в познании
- •Глава IV. Законы (принципы) правильного мышления
- •Глава IV. Законы (принципы) правильного мышления
- •§ 3. Использование формально-логических законов в процессе обучения
- •Глава IV, законы (принципы) правильного мышления
- •Глава IV. Законы (принципы) правильного мышления 111
- •Глава IV. Законы (принципы) правильного мышления
- •Глава IV, законы (принципы) правильного мышления
- •Глава V умозаключение
- •§ 1. Общее понятие об умозаключении
- •Глава V. Умозаключение
- •Глава V, умозаключение § 2. Дедуктивные умозаключения
- •Глава V. Умозаключение
- •§ 3. Выводы из категорических суждений посредством их преобразования
- •Глава V. Умозаключение
- •Глава V. Умозаключение 129
- •§ 4. Простой категорический силлогизм1
- •Глава V. Умозаключение 131
- •Глава V. Умозаключение
- •§ 5. Сокращенный категорический силлогизм (энтимема)
- •§ 6. Сложные и сложносокращенные силлогизмы (полисиллогизмы, сориты, эпихейрема)
- •Глава V. Умозаключение
- •§ 7. Условные умозаключения
- •Утверждающий модус (modus ponens).
- •Отрицающий модус (modus tollens).
- •Глава V. Умозаключение
- •Первый вероятностный модус
- •Глава V. Умозаключение 145
- •§ 8. Разделительные умозаключения
- •Глава V. Умозаключение
- •§ 9. Условно-разделительные умозаключения
- •Глава V умозаключение
- •ГлаваV.Умозаключение
- •§ 10. Сокращенные условные, разделительные и условно-разделительные умозаключения
- •В умозаключении пропущена одна из посылок
- •Простая контрапозиция.
- •Сложная контрапозиция.
- •ГлаваV.Умозаключение
- •§ 11. Непрямые (косвенные) выводы
- •2. Правило сведения «к абсурду»
- •Правило непрямого вывода — рассуждение «от противного» (противоречащего)
- •§ 12. Индуктивные умозаключения и их виды
- •Глава V. Умозаключение
- •Глава V. Умозаключение
- •Глава V. Умозаключение
- •§ 13. Индуктивные методы установления причинных связей
- •Глава V. Умозаключение 171
- •Глава V. Умозаключение
- •§ 14. Дедукция и индукция в учебном процессе
- •Глава V. Умозаключение 75
- •Глава V. Умозаключение
- •Глава V. Умозаключение
- •Глава V. Умозаключение
- •Глава V. Умозаключение
- •Глава V. Умозаключение
- •Глава VI. Логические основы теории аргументации 187
- •Глава VI логические основы теории аргументации
- •§ 1. Понятие доказательства
- •§ 2. Прямое и непрямое (косвенное) доказательства
- •Глава VI. Логические основы теории аргументации
- •§ 3. Понятие опровержения
- •Опровержение тезиса (прямое и косвенное)
- •Глава VI. Логические основы теории аргументации
- •Критика аргументов
- •§ 4. Правила доказательного рассуждения. Логические ошибки, встречающиеся в доказательствах и опровержениях
- •Глава VI. Логические основы теории аргументации
- •Глава VI. Логические основы теории аргументации
- •Нарушение правил умозаключений (дедуктивных, индуктивных, по аналогии):
- •Глава VI. Логические основы теории аргументации 201
- •§ 5. Понятие о софизмах и логических парадоксах
- •«Из точки на прямую можно опустить два перпендикуляра»;
- •«Всякая окружность имеет два центра»;
- •Глава VI. Логические основы теории аргументации 20 3
- •§ 6. Искусство ведения дискуссии
- •Глава V). Логические основы теории аргументации 20 5
- •Глава VI. Логические основы теории аргументации 20 9
- •Глава VI. Логические основы теории аргументации
- •Глава VI. Логические основы теории аргументации 21 3
- •VI. Логические основы теории аргументации 21 5
- •Глава VII аналогия и гипотеза. Их роль в учебном процессе
- •§ 1. Умозаключение по аналогии и его виды
- •Глава VII. Аналогия и гипотеза. Их роль в учебном процессе 22 1
- •§ 2. Гипотеза и ее виды
- •Глава VII. Аналогия и гипотеза. Их роль в учебном
- •§ 3. Построение гипотез
- •Глава VII. Аналогия и гипотеза. Их роль в учебном процессе 229
- •Глава VIII роль логики в процессе обучения § 1. Логическая структура вопроса
- •§ 2. И в.А.Сухомлинский о формировании логического мышления в процессе обучения в начальной школе
- •§ 3. Развитие логического мышления младших
- •Глава VIII. Роль логики в процессе обучения 247
- •§ 4. Развитие логического мышления учащихся в процессе обучения в средних и старших классах
- •Глава VIII. Роль логики в процессе обучения 24 9
- •Глава IX методика преподавания логики
- •§ 1. Формирование логической культуры как условие гуманитаризации педагогического образования и специфика методики изучения логики в педвузах и педуниверситетах
- •Глава IX. Методика преподавания логики ... 25 3
- •Глава IX. Методика преподавания логики ... 25 5
- •Глава IX. Методика преподавания логики ...
- •Глава IX. Методика преподавания логики ... 25 9
- •Глава IX. Методика преподавания логики ... 26 1
- •Глава IX. Методикапреподаваниялогики ...
- •Глава IX. Методика преподавания логики ... 26 9
- •Глава IX. Методика преподавания логики ... 271
- •Глава IX. Методика преподавания логики ...
- •Глава IX, методика преподавания логики ...
- •Глава IX. Методика преподавания логики ...
- •Глава IX. Методика преподавания логики ... 27 9
- •IX. Методика преподавания 287
- •Глава IX. Методика преподавания логики ... 28 9
- •Глава IX. Методика преподавания логики ... 29 1
- •Глава IX. Методика преподавания логики ... 29 7
- •§ 2. Специфика методики преподавания логики в средних педагогических учебных заведениях: педколледжах, педклассах (из опыта работы)
- •Глава IX. Методика преподавания логики... 301
- •Глава IX. Методика преподаваниялогики ... 303
- •Кроссворд
- •Глава IX. Методика преподавания логики ....
- •Продолжите ряд чисел.
- •Глава IX. Методика преподавания 309
- •8. Анаграммы и исключите лишнее слово.
- •Выберите нужную фигуру из пронумерованных.
- •Глава IX. Методика преподавания логики ... 313
- •Вставьте слово, которое служило бы окончанием первого слова и началом второго. Прик(...)ья
- •Решите анаграммы и исключите лишнее слово.
- •Глава IX. Методика преподавания
- •Глава IX. Методика преподавания 317
- •§ 3. Методика повышения логической культуры учащихсяначальнойисреднейшколы(изопыта работы)
- •Глава IX. Методика преподаваниялогики ...
- •Глава X. Этапы развития логики как науки и основные направления ... 333
- •Глава X
- •Этапы развитиялогики какнауки
- •И основные направления современной
- •§ 1. Краткие сведения из истории классической и неклассических логик
- •Глава X, этапы развития логики как науки и основные направления ...
- •Глава X. Этапы развития логики как науки и основные направления ... 339
- •Глава X. Этапы развития логики как науки и основные направления ...
- •Глава X. Этапы развития логики как науки и основные направления ... 343
- •Глава X. Этапы развития логики как науки и основные направления ... 34 5
- •Глава X. Этапы развития логики как науки и основные направления ... 347
- •Глава X. Этапы развития логики как науки и основные направления ... 349
- •Глава X. Этапы развития логики как науки и основные направления ...
- •Глава X, этапы развития логики как науки и основные направления ... 35 3
- •Глава X. Этапы развития логики как науки и основные направления ... 357
- •Глава X. Этапы развития логики как науки и основные направления ... 359
- •§ 2. Развитие логики в связи с проблемой обоснования математики
- •Глава X. Этапы развития логики как науки и основные направления ... 36 3
- •Глава X. Этапы развития логики как науки и основные направления ... 36 5
- •§ 3. Интуиционистская логика
- •Глава X. Этапы развития логики как науки и основные направления ... 367
- •Глава X. Этапы развития логики как науки и основные направления ... 369
- •§ 4. Конструктивные логики
- •Глава X. Этапы развития логики как науки и основные направления ... 371
- •Глава X. Этапы развития логики как науки и основные направления ... 37 3
- •§ 5. Многозначные логики
- •Отрицание Лукасевича
- •Глава X. Этапы развития логики как науки и основные направления ... 375
- •Глава X. Этапы развития логики как науки и основные направления ... 377 Импликация Гейтинга
- •Отрицание Гейтинга
- •Глава X. Этапы развития логики как науки и основные направления ... 379
- •Глава X. Этапы развития логики как науки и основные направления ... 381
- •Глава X. Этапы развития логики как науки и основные направления ... 383
- •§ 6. Законы исключенного третьего и непротиворечия в неклассических логиках (многозначных, интуиционистской, конструктивных)
- •Глава X. Этапы развития логики как науки и основные направления ... 385
- •§ 7. Модальные логики
- •§ 6 «Деление суждений по модальности»). Модальные суждения рассматри- ваются в специальном направлении современной формальной логики — в модальной логике.
- •Глава X. Этапы развития логики как науки и основные направления ...
- •§ 8. Положительные
- •Глава X. Этапы развития логики как науки и основные направления ... 393
- •§ 9. Паранепротиворечивая логика
- •Глава X. Этапы развития логики как науки и основные направления ... 39 5
- •Глава X, этапы развития логики как науки и основные направления ... 397
- •Заключение
- •Понятие.
- •Равнозначности.
- •Суждение.
- •Понятие.
- •Умозаключение.
- •Логические основы теории аргументации.
- •Рекомендуемая
- •Учебная литература
- •II.Популярнаялитература
- •Литература по педагогическим приложениям
- •V «или или ь» — строгая дизъюнкция.
- •Система Аккермана
- •Содержание
- •А.Д. Гетманова логика
- •123022, Г. Москва, Столярный пер., 14, подъезд 2, тел. (095) 253-46-82
- •Отпечатано с готовых диапозитивов в гуп пик
- •420066, Г. Казань, ул. Декабристов, 2.
§ 3. Интуиционистская логика
Интуиционистская
логика построена в связи с развитием
интуицио-
нистской
математики. Интуиционистская
школа основана
в 1907
г. гол-
ландским математиком и логиком Л.Брауэром
но некоторые
ее идеи
выдвигались и
ранее.
Интуиционизм —• философское направление в математике и логике, от- казывающееся от использования абстракции актуальной бесконечности, отвергающее логику как науку, предшествующую математике, и рассматри- вающее интуитивную ясность и убедительность («интуицию») как послед- нюю основу математики и логики. Интуиционисты свою интуиционист- скую математику строят с помощью финитных (конечных) средств на ос- нове системы натуральных чисел, которая считается известной из интуи- ции. Интуиционизм включает в себя две стороны — философскую и мате- матическую.
Математическое содержание интуиционизма изложено в ряде работ ма- тематиков. Ведущие представители отечественной школы конструктивной математики отмечают положительное значение некоторых математических идей интуиционистов.
B.C.
Очерки по логике квантовой механики.
М., 1986. С, 9.
L.E.J. and
Formalism
//
Bulletin
ofAmerican
Mathematical
Society.
1913.
Vol.
20.
The
Effect
of
Intuitionism
on
Classical
Algebra
of
Logic
//
Proceedings
of
the Royal
Irish
Academy.
1955.
Vol.
57.
P.
Глава X. Этапы развития логики как науки и основные направления ... 367
В
целом конструктивная математика
существенно отличается от интуи-
ционистской,
но, как
указывал
советский
Марков,
конструктивное направление имеет
точки соприкосновения с интуиционистской
математикой. Конструктивисты сходятся
с интуицио-
нистами в
понимании дизъюнкции и в силу
этого
признают правильной данную
Брауэром
критику
закона
исключенного
третьего.
Вместе
с
тем
кон-
структивисты
считают неприемлемыми методологические
основы интуи- ционизма.
Если математический аспект интуиционизма имеет рациональный смысл (в этой связи предпочтительнее говорить об интуиционистской мате- матике или интуиционистской логике, а не об интуиционизме), то второй его аспект — философско-методологический — совершенно неприемлем.
Брауэр считал, что чистая математика представляет собой свободное творение разума и не имеет никакого отношения к опытным фактам. У ин- туиционистов единственным источником математики оказывается интуи- ция, а критерием приемлемости математических понятий и выводов явля- ется «интуитивная ясность». Но интуиционист Гейтинг вынужден был при- знаться в том, что понятие интуитивной ясности в математике само не яв- ляется интуитивно ясным; можно даже построить нисходящую шкалу сте- пеней очевидности.
Основой происхождения математики в конечном итоге является не ка- кая-то «интуитивная ясность», а отражение в сознании пространственных форм и количественных отношений действительного мира. Гейтинг, как и Брауэр, в гносеологии субъективный идеалист. Он считает, что математи- ческая мысль не выражает истину о внешнем мире, а связана исключитель- но с умственными построениями1.
Еще
в
г.
советский
подверг
критике
субъ-
ективно-идеалистические
основы интуиционизма, заявив, что
невозможно
согласиться
с
интуиционистами, когда
они говорят,
что
математические
объ- екты
являются продуктом
конструктивной
деятельности нашего
духа,
ибо
математические
объекты являются
абстракциями реально существующих
форм
независимой от нашего духа
Интуиционисты
не
признают
практику и опыт источником формирования
математических
по- нятий,
методов
математических
построений
и методов
доказательств.
Особенности интуиционистской логики вытекают из характерных при- знаков интуиционистской математики.
См.:
Гейтинг
А.
Интуиционизм//
Пер.
с
англ.
М.,
С.
17.
368
В современной классической математике
часто прибегают к косвенным
доказательствам. Но их почти
невозможно ввести в интуиционистскую
ма- тематику и логику,
так как там не признаются закон
исключенного третье- го и закон
которые
участвуют в
косвенных доказательствах. Но за- кон
непротиворечия представители как
интуиционистской, так
и конст- руктивной
логики считают неограниченно
применимым.
Закон
исключенного третьего
для бесконечных множеств
в интуицио-
нистской логике не проходит
потому, что
р vp требует
общего метода,
кото- рый по
произвольному высказыванию/?
позволил бы
получать
доказательст- р,
либо
доказательство Рейтинг
считает, что
так как
интуици- онисты не располагают
таким методом,
то они не вправе утверждать
и прин-
цип исключенного третьего.
Покажем это на таком примере.
Возьмем ут-
верждение: «Всякое
целое число,
большее единицы, либо простое,
либо сум-
ма двух простых,
либо сумма трех
простых». Неизвестно, так это или
не так в
общем случае, хотя
в рассмотренных случаях,
которых конечное
число, это
так. Существует ли
число, которое не удовлетворяет
этому
требованию? Мы
не можем указать
такое число и не можем
вывести противоречие из
допуще-
ния его существования.
Эта знаменитая проблема Х.Гольдбаха была поставлена им в 1742 г. и не поддавалась решению около 200 лет. Гольдбах высказал предположение, что всякое целое число, большее или равное шести, может быть представ- лено в виде суммы трех простых чисел. Для нечетных чисел это предполо- жение было доказано только в 1937 г. советским математиком академиком И.М.Виноградовым; все достаточно большие нечетные числа представимы в виде суммы трех простых чисел. Это — одно из крупнейших достижений современной математики.
Брауэр первый наметил контуры новой
логики. Идеи Брауэра формали- зовал
Гейтинг, в 1930
г. построивший интуиционистское
исчисление пред- ложений с использованием
импликации, конъюнкции,
дизъюнкции и от- рицания на основе
аксиом и двух
правил вывода — modus ponens и пра-
вила подстановки. Гейтинг
утверждает, что
хотя основные различия между
классической и интуиционистской
логиками касаются
свойств отрицания,
эти логики не совсем совпадают и в
формулах без отрицания. Он отличает
математическое отрицание от фактического:
первое выражается в форме конструктивного
построения
(выполнения)
определенного
действия, а
второе говорит о невыполнении действия
(«невыполнение» чего-либо не является
конструктивным действием). Интуиционистская
логика имеет де-
