- •А.Д. Гетман
- •Рекомендованоучебно-методическимобъединением Министерства образования Российской Федерации по педагогическому образованию
- •Вкачествеучебникадлястудентов высших учебных заведений
- •Введение
- •Глава I. Предмет и значение логики Глава I предмет и значение логики
- •§ 1. Формы познания
- •Глава I. Предмет и значение логики
- •§ 2. Понятие логической формы и логического закона
- •Глава I. Предмет и значение логики
- •Глава I. Предмет и значение логики
- •§ 3. Логика и язык
- •Глава I. Предмет и значение логики 19
- •Глава I. Предмет и значение логики
- •Глава I.Предмет изначение логики 23
- •Глава I. Предмет и значение логики 27
- •Глава II понятие
- •§ 1. Понятие как форма мышления
- •§ 2. Отношения между понятиями
- •Глава II. Понятие 35
- •§ 3. Определение понятий
- •Глава II. Понятие
- •Глава II. Понятие
- •Глава II. Понятие 41
- •Глава II. Понятие 43
- •Глава II. Понятие 45
- •§ 4. Деление понятий. Классификация
- •Правила деления понятий
- •Глава II. Понятие 47
- •Глава II. Понятие 49
- •Глава II, понятие
- •§ 5. Ограничение и обобщение понятий
- •Глава II. Понятие 53
- •Глава II. Понятие 55
- •Глава II. Понятие 57
- •Глава II. Понятие 59
- •Глава III суждение
- •§ 1. Общая характеристика суждения
- •Глава III. Суждение
- •§ 2. Простое суждение
- •Глава III. Суждение
- •Суждения свойства (атрибутивные).
- •Суждения с отношениями.
- •Суждения существования (экзистенциальные).
- •Глава III. Суждение 67
- •§ 3. Сложное суждение и его виды. Исчисление высказываний
- •Глава III. Суждение 71
- •Глава III, суждение 73
- •Глава III. Суждение 75
- •§ 4. Выражение логических связок (логических постоянных) в естественном языке
- •Глава III. Суждение 77
- •Глава III. Суждение 79
- •Глава III. Суждение 81 § 5. Отношения между суждениями по значениям
- •Глава III. Суждение 83
- •§ 6. Деление суждений по модальности
- •Глава III. Суждение 85
- •Глава III. Суждение 87
- •Глава III. Суждение 89
- •Глава IV. Законы (принципы) правильного мышления
- •Глава IV
- •Законы (принципы)
- •Мышления
- •§ 1. Понятие логического закона
- •§ 2. Законы логики и их роль в познании
- •Глава IV. Законы (принципы) правильного мышления
- •Глава IV. Законы (принципы) правильного мышления
- •§ 3. Использование формально-логических законов в процессе обучения
- •Глава IV, законы (принципы) правильного мышления
- •Глава IV. Законы (принципы) правильного мышления 111
- •Глава IV. Законы (принципы) правильного мышления
- •Глава IV, законы (принципы) правильного мышления
- •Глава V умозаключение
- •§ 1. Общее понятие об умозаключении
- •Глава V. Умозаключение
- •Глава V, умозаключение § 2. Дедуктивные умозаключения
- •Глава V. Умозаключение
- •§ 3. Выводы из категорических суждений посредством их преобразования
- •Глава V. Умозаключение
- •Глава V. Умозаключение 129
- •§ 4. Простой категорический силлогизм1
- •Глава V. Умозаключение 131
- •Глава V. Умозаключение
- •§ 5. Сокращенный категорический силлогизм (энтимема)
- •§ 6. Сложные и сложносокращенные силлогизмы (полисиллогизмы, сориты, эпихейрема)
- •Глава V. Умозаключение
- •§ 7. Условные умозаключения
- •Утверждающий модус (modus ponens).
- •Отрицающий модус (modus tollens).
- •Глава V. Умозаключение
- •Первый вероятностный модус
- •Глава V. Умозаключение 145
- •§ 8. Разделительные умозаключения
- •Глава V. Умозаключение
- •§ 9. Условно-разделительные умозаключения
- •Глава V умозаключение
- •ГлаваV.Умозаключение
- •§ 10. Сокращенные условные, разделительные и условно-разделительные умозаключения
- •В умозаключении пропущена одна из посылок
- •Простая контрапозиция.
- •Сложная контрапозиция.
- •ГлаваV.Умозаключение
- •§ 11. Непрямые (косвенные) выводы
- •2. Правило сведения «к абсурду»
- •Правило непрямого вывода — рассуждение «от противного» (противоречащего)
- •§ 12. Индуктивные умозаключения и их виды
- •Глава V. Умозаключение
- •Глава V. Умозаключение
- •Глава V. Умозаключение
- •§ 13. Индуктивные методы установления причинных связей
- •Глава V. Умозаключение 171
- •Глава V. Умозаключение
- •§ 14. Дедукция и индукция в учебном процессе
- •Глава V. Умозаключение 75
- •Глава V. Умозаключение
- •Глава V. Умозаключение
- •Глава V. Умозаключение
- •Глава V. Умозаключение
- •Глава V. Умозаключение
- •Глава VI. Логические основы теории аргументации 187
- •Глава VI логические основы теории аргументации
- •§ 1. Понятие доказательства
- •§ 2. Прямое и непрямое (косвенное) доказательства
- •Глава VI. Логические основы теории аргументации
- •§ 3. Понятие опровержения
- •Опровержение тезиса (прямое и косвенное)
- •Глава VI. Логические основы теории аргументации
- •Критика аргументов
- •§ 4. Правила доказательного рассуждения. Логические ошибки, встречающиеся в доказательствах и опровержениях
- •Глава VI. Логические основы теории аргументации
- •Глава VI. Логические основы теории аргументации
- •Нарушение правил умозаключений (дедуктивных, индуктивных, по аналогии):
- •Глава VI. Логические основы теории аргументации 201
- •§ 5. Понятие о софизмах и логических парадоксах
- •«Из точки на прямую можно опустить два перпендикуляра»;
- •«Всякая окружность имеет два центра»;
- •Глава VI. Логические основы теории аргументации 20 3
- •§ 6. Искусство ведения дискуссии
- •Глава V). Логические основы теории аргументации 20 5
- •Глава VI. Логические основы теории аргументации 20 9
- •Глава VI. Логические основы теории аргументации
- •Глава VI. Логические основы теории аргументации 21 3
- •VI. Логические основы теории аргументации 21 5
- •Глава VII аналогия и гипотеза. Их роль в учебном процессе
- •§ 1. Умозаключение по аналогии и его виды
- •Глава VII. Аналогия и гипотеза. Их роль в учебном процессе 22 1
- •§ 2. Гипотеза и ее виды
- •Глава VII. Аналогия и гипотеза. Их роль в учебном
- •§ 3. Построение гипотез
- •Глава VII. Аналогия и гипотеза. Их роль в учебном процессе 229
- •Глава VIII роль логики в процессе обучения § 1. Логическая структура вопроса
- •§ 2. И в.А.Сухомлинский о формировании логического мышления в процессе обучения в начальной школе
- •§ 3. Развитие логического мышления младших
- •Глава VIII. Роль логики в процессе обучения 247
- •§ 4. Развитие логического мышления учащихся в процессе обучения в средних и старших классах
- •Глава VIII. Роль логики в процессе обучения 24 9
- •Глава IX методика преподавания логики
- •§ 1. Формирование логической культуры как условие гуманитаризации педагогического образования и специфика методики изучения логики в педвузах и педуниверситетах
- •Глава IX. Методика преподавания логики ... 25 3
- •Глава IX. Методика преподавания логики ... 25 5
- •Глава IX. Методика преподавания логики ...
- •Глава IX. Методика преподавания логики ... 25 9
- •Глава IX. Методика преподавания логики ... 26 1
- •Глава IX. Методикапреподаваниялогики ...
- •Глава IX. Методика преподавания логики ... 26 9
- •Глава IX. Методика преподавания логики ... 271
- •Глава IX. Методика преподавания логики ...
- •Глава IX, методика преподавания логики ...
- •Глава IX. Методика преподавания логики ...
- •Глава IX. Методика преподавания логики ... 27 9
- •IX. Методика преподавания 287
- •Глава IX. Методика преподавания логики ... 28 9
- •Глава IX. Методика преподавания логики ... 29 1
- •Глава IX. Методика преподавания логики ... 29 7
- •§ 2. Специфика методики преподавания логики в средних педагогических учебных заведениях: педколледжах, педклассах (из опыта работы)
- •Глава IX. Методика преподавания логики... 301
- •Глава IX. Методика преподаваниялогики ... 303
- •Кроссворд
- •Глава IX. Методика преподавания логики ....
- •Продолжите ряд чисел.
- •Глава IX. Методика преподавания 309
- •8. Анаграммы и исключите лишнее слово.
- •Выберите нужную фигуру из пронумерованных.
- •Глава IX. Методика преподавания логики ... 313
- •Вставьте слово, которое служило бы окончанием первого слова и началом второго. Прик(...)ья
- •Решите анаграммы и исключите лишнее слово.
- •Глава IX. Методика преподавания
- •Глава IX. Методика преподавания 317
- •§ 3. Методика повышения логической культуры учащихсяначальнойисреднейшколы(изопыта работы)
- •Глава IX. Методика преподаваниялогики ...
- •Глава X. Этапы развития логики как науки и основные направления ... 333
- •Глава X
- •Этапы развитиялогики какнауки
- •И основные направления современной
- •§ 1. Краткие сведения из истории классической и неклассических логик
- •Глава X, этапы развития логики как науки и основные направления ...
- •Глава X. Этапы развития логики как науки и основные направления ... 339
- •Глава X. Этапы развития логики как науки и основные направления ...
- •Глава X. Этапы развития логики как науки и основные направления ... 343
- •Глава X. Этапы развития логики как науки и основные направления ... 34 5
- •Глава X. Этапы развития логики как науки и основные направления ... 347
- •Глава X. Этапы развития логики как науки и основные направления ... 349
- •Глава X. Этапы развития логики как науки и основные направления ...
- •Глава X, этапы развития логики как науки и основные направления ... 35 3
- •Глава X. Этапы развития логики как науки и основные направления ... 357
- •Глава X. Этапы развития логики как науки и основные направления ... 359
- •§ 2. Развитие логики в связи с проблемой обоснования математики
- •Глава X. Этапы развития логики как науки и основные направления ... 36 3
- •Глава X. Этапы развития логики как науки и основные направления ... 36 5
- •§ 3. Интуиционистская логика
- •Глава X. Этапы развития логики как науки и основные направления ... 367
- •Глава X. Этапы развития логики как науки и основные направления ... 369
- •§ 4. Конструктивные логики
- •Глава X. Этапы развития логики как науки и основные направления ... 371
- •Глава X. Этапы развития логики как науки и основные направления ... 37 3
- •§ 5. Многозначные логики
- •Отрицание Лукасевича
- •Глава X. Этапы развития логики как науки и основные направления ... 375
- •Глава X. Этапы развития логики как науки и основные направления ... 377 Импликация Гейтинга
- •Отрицание Гейтинга
- •Глава X. Этапы развития логики как науки и основные направления ... 379
- •Глава X. Этапы развития логики как науки и основные направления ... 381
- •Глава X. Этапы развития логики как науки и основные направления ... 383
- •§ 6. Законы исключенного третьего и непротиворечия в неклассических логиках (многозначных, интуиционистской, конструктивных)
- •Глава X. Этапы развития логики как науки и основные направления ... 385
- •§ 7. Модальные логики
- •§ 6 «Деление суждений по модальности»). Модальные суждения рассматри- ваются в специальном направлении современной формальной логики — в модальной логике.
- •Глава X. Этапы развития логики как науки и основные направления ...
- •§ 8. Положительные
- •Глава X. Этапы развития логики как науки и основные направления ... 393
- •§ 9. Паранепротиворечивая логика
- •Глава X. Этапы развития логики как науки и основные направления ... 39 5
- •Глава X, этапы развития логики как науки и основные направления ... 397
- •Заключение
- •Понятие.
- •Равнозначности.
- •Суждение.
- •Понятие.
- •Умозаключение.
- •Логические основы теории аргументации.
- •Рекомендуемая
- •Учебная литература
- •II.Популярнаялитература
- •Литература по педагогическим приложениям
- •V «или или ь» — строгая дизъюнкция.
- •Система Аккермана
- •Содержание
- •А.Д. Гетманова логика
- •123022, Г. Москва, Столярный пер., 14, подъезд 2, тел. (095) 253-46-82
- •Отпечатано с готовых диапозитивов в гуп пик
- •420066, Г. Казань, ул. Декабристов, 2.
Глава X. Этапы развития логики как науки и основные направления ... 357
противоречия, т.е.
утверждения и
отрицания одного и того же положения,
что записывается, например, как
наличие
АВСа.
Джевонс считал, что утвердительные суждения можно представлять в от- рицательной форме. Но он напрасно категорически заявлял, что имеются сильные основания в пользу того, чтобы употреблять все предложения в их утвердительной форме, а различие (т.е. отрицательные суждения) неспособ- но быть основанием умозаключения. Джевонс не отрицал, что утверждение и отрицание, сходство и различие, равенство и неравенство представляют пары одинаково основных отношений; но утверждал, что умозаключение возможно только там, где прямо находится или подразумевается утвержде- ние, сходство или равенство, словом, какой-нибудь вид тождества.
Согласно законам диалектики, тождество и различие являются двумя сторонами единого предмета или процесса. Отражение отношений тожде- ства и различия, имеющихся в самих предметах действительного мира, на- ходит свое выражение и в мышлении, в формах умозаключений. Поэтому отбросить различие, выражающееся в отрицательных суждениях, и все све- сти только к тождеству, выражающемуся в утвердительных суждениях, нельзя, да и нет в этом необходимости. Единство противоположностей — тождества и различия — неразрывно.
Интересны и оригинальны взгляды
на
категорический силло- гизм с двумя
отрицательными посылками. Джевонс
утверждает, что
его принцип
умозаключения ясно
отличает случаи, когда
оно оказывается пра- вильным, от тех
случаев, когда оно неправильно. Он
приводит пример умо- заключения:
Все,
что не
не
способно к сильному
магнитному
Уголь не металличен.
Уголь не способен к сильному магнитному влиянию.
Здесь
из двух отрицательных
посылок получается
истинное отрицатель- ное заключение.
считает,
что там, где
возможно подставлять тож- дественное
вместо тождественного,
допустим вывод из
двух
отрицательных
посылок.
Джевонс внес значительный вклад в алгебру логики, особенно в пробле- му отрицания классов и отрицательных суждений.
358 ЛОГИКА
Следующий
этап в развитии математической логики
связан с
именем
русского
логика,
математика
и
астронома
Платона
Сергеевича
Порецкого
Его существенно
обобщают и
развивают
достижения
Буля, Джевонса
и
Анализируя
понятия,
Порецкий различает
две формы:
форму,
обладаю-
щую
данным
признаком, обозначаемую
буквами а,
с..., и
форму,
им не
обладающую,
обозначаемую
с,
и
т.д.2
Формы
совместного
обладания
или
необладания
несколькими
признаками
записывает
так:
а,
(без особого
знака между
буквами).
Современное пересечение классов Порец-
кий
называет
операцией
(умножения),
обозначая ее «•»,
а операцию
объединения классов — абстрагированием
(сложением), обо- значая
ее
«?»,
т.е.
знаком
вопроса;
0
и
1
обозначают
пустой
класс
и
универ-
сальный. Порецкий
вводит
операцию
отрицания
классов
(отрицание
а
обозначается
через а,) —
это дополнение к классу
а. Для
каждого данно-
го а
его отрицание,
т.е.
может
быть различно. Это определяется избран-
ным
универсальным классом. Так, если за
т.е.
универсум,
принять англи- чан,
а
за
а
класс
артистов,
то
а,
означает
англичан-не-артистов,
но
если
1 обозначает
класс
людей,
то
а,
обозначает
людей-не-артистов
и
т.д.
Заслуга
Порецкого в том, что он рассматривал
логические
операции
не
только
над
отдельными
логическими
классами,
но
и
над
логическими
ра-
венствами.
Порецкий считает,
что если
два класса состоят из одних и
тех
же
предметов,
т.е.
имеют
равные
объемы
и
могут
отличаться
только
формой,
то
они
равны
между
собой.
Соединяя
равные
классы
знаком
мы
полу-
чаем логическое
равенство. Равенством логических классов
русский
логик называет
полную их тождественность, т.е.
одинаковость
их
логического
со-
держания,
считая,
что
все
их
различие
может
состоять
только
в
способе
их
происхождения.
Примером такого равенства является
закон
де
Моргана:
+ •
Если
классы а и
b равны,
то и их отрицания,
т.е.
классы
также
равны.
По мнению,
отрицание всякого равенства
приводит
к новому равенству, тождественному первоначальному.
По мнению Порецкого, операция отрицания неприменима к системам равенств. К соединению двух и более равенств в одно новое равенство при- См.: Порецкий ПС. Решение общей задачи теории вероятностей при помощи мате-
матической
логики. Казань, 1887, др.
О
способах
решения
логических
равенств
и
об
обратном
способе
ма-
тематической
логики.
Казань,
1884.
С.
III.
