- •1.Материальная точка. Абсолютно твёрдое тело. Система отсчёта.
- •2.Кинематика точки. Путь. Перемещение. Скорость и ускорение. Их проекции на координатные оси. Вычисление пройденного пути. Средние значения.
- •3.Скорость и ускорение при криволинейном движении. Тангенциальное и нормальное ускорения.
- •4.Кинематика твёрдого тела. Вращение вокруг неподвижной оси. Угловые скорость и ускорения. Связь между угловыми и линейными скоростями и ускорениями.
- •5.Границы применимости ньютоновской механики. Первый закон Ньютона.
- •6.Масса и импульс. Второй закон Ньютона как уравнение движения.
- •7.Третий закон Ньютона. Центр масс. Уравнение движения центра масс.
- •8.Сила тяжести и вес тела. Упругие силы. Силы трения.
- •9.Законы сохранения. Силы внутренние и внешние. Замкнутая система. Сохраняющиеся величины. Связь законов сохранения со свойствами пространства и времени.
- •10.Закон сохранения импульса. Реактивное движение. Движение тела с переменной массой.
- •11.Работа переменной силы и мощность. Кинетическая энергия частицы.
- •12.Потенциальная энергия. Виды потенциальной энергии. Связь силы и потенциальной энергии.
- •13.Полная механическая энергия частицы. Консервативные и диссипативные системы. Закон сохранения энергии.
- •14.Закон всемирного тяготения. Гравитационное поле и его характеристики. Потенциал поля. Связь между потенциалом и напряжённостью поля. Космические скорости.
- •15.Вывод основного закона динамики вращательного движения.
- •16.Момент инерции тела относительно оси. Момент инерции кольца, диска.
- •17.Момент инерции шара. Теорема Штейнера.
- •18.Момент импульса. Уравнение моментов. Закон сохранения момента импульса.
- •19.Гироскоп. Свободные оси. Главные оси момента инерции. Регулярная прецессия.
- •20.Работа силы при вращении твердого тела. Кинетическая энергия вращающегося тела.
- •21.Неинерциальные системы отсчёта. Силы инерции. Принцип эквивалентности. Уравнение движения в неинерциальных системах отсчёта.
- •22.Принцип относительности Галилея. Преобразования Галилея. Классическая теорема сложения скоростей. Инвариантность законов Ньютона в инерциальных системах отсчёта.
- •23.Постулаты Эйнштейна для сто. Преобразования Лоренца.
- •24.Относительность понятия одновременности. Относительность длин и промежутков времени. Интервал между событиями. Его инвариантность. Причинность.
- •25.Релятивистский закон преобразования скорости. Релятивистский импульс.
- •26.Релятивистское уравнение динамики. Релятивистское выражение для кинетической и полной энергии. Взаимосвязь массы и энергии.
- •27.Уравнение свободных колебаний без трения: пружинный маятник. Его решения. Вектор-амплитуда.
- •28.Физические и математические маятники.
- •29.Гармонический осциллятор. Энергия гармонического осциллятора. Сложение одинаково направленных и взаимно перпендикулярных колебаний.
- •30.Уравнение затухающих колебаний и его решение. Коэффициент затухания. Логарифмический декремент затухания. Добротность.
- •31. Уравнение вынужденных колебаний и его решение. Векторная диаграмма. Амплитуда и фаза вынужденных колебаний.
- •32.Резонанс. Резонансные кривые для амплитуды и фазы вынужденных колебаний.
- •33.Гидродинамика. Линии тока. Уравнение Бернулли.
- •34.Ламинарное и турбулентное течение жидкости. Сила вязкого трения в жидкости. Число Рейнольдса. Формула Пуазейля.
- •35.Термодинамический метод исследования. Термодинамические параметры. Равновесные состояния и процессы, их изображение на термодинамических диаграммах.
- •36.Вывод уравнения молекулярно-кинетической теории идеальных газов для давления и его сравнения с уравнением Клайперона-Менделеева.
- •37.Средняя кинетическая энергия молекул. Молекулярно-кинетическое толкование абсолютной температуры. Число степеней свободы. Закон равномерного распределения энергии по степеням свободы молекул.
- •38.Работа газа при изменении его объёма. Количество теплоты. Теплоёмкость. Первое начало термодинамики.
- •39.Приминение первого начала термодинамики к изопроцессам и адиабатному процессу идеального газа. Зависимость теплоёмкости идеального газа от вида процесса.
- •40.Работа, совершаемая идеальным газом в различных процессах.
- •41.Адиабатный процесс. Уравнение Пуассона для адиабатного процесса.
- •42.Политропический процесс. Теплоёмкость газа в политропическом процессе.
- •44.Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям.
- •45.Барометрическая формула. Закон Больцмана для распределения частиц во внешнем потенциальном поле.
- •46.Среднее число столкновений и средняя длина свободного пробега молекул. Их связь с концентрацией и размером молекул.
- •47. Понятие о разрежённых газах. Вакуум и методы его получения.
- •48.Обратимые и необратимые процессы. Круговой процесс (цикл). Тепловые двигатели и холодильные машины. Термический кпд.
- •49.Цикл Карно и его кпд для идеального газа. Второе начало термодинамики. Независимость кпд цикла Карно от рабочего вещества. Лемма Карно.
- •50.Энтропия идеального газа при обратимых и необратимых процессах.
- •51.Статистическое толкование энтропии.
- •52.Термодинамические потенциалы. Направление течения процессов в неравновесных состояниях.
- •53.Термодинамика необратимых процессов. Явления переноса в термодинамически неравновесных системах. Опытные законы диффузии, теплопроводности и внутреннего трения.
- •54.Реальные газы. Силы и потенциальная энергия межмолекулярного взаимодействия. Уравнение Ван-дер-Ваальса.
- •55.Изотермы Ван-дер-Ваальса и их сопоставление с реальными изотермами. Критическая температура. Внутренняя энергия газа Ван-дер-Ваальса.
- •56.Тепловые явления при низких температурах. Третье начало термодинамики.
- •57.Понятие фазы. Фазовые переходы 1 и 2 рода. Фазовые диаграммы. Тройная точка.
53.Термодинамика необратимых процессов. Явления переноса в термодинамически неравновесных системах. Опытные законы диффузии, теплопроводности и внутреннего трения.
ТЕРМОДИНАМИКА НЕОБРАТИМЫХ ПРОЦЕССОВ (неравновесная термодинамика), изучает общие закономерности поведения систем, не находящихся в состоянии термодинамического равновесия. В таких системах имеют место разнообразные неравновесные процессы (теплопередача, диффузия, электрич. ток, хим. р-ции и т. п.), к-рые являются необратимыми в термодинамич. смысле (см. Обратимые и необратимые процессы). Согласно ур-нию Клаузиуса, для неадиабатич. процессов изменение энтропии системы dS равно:
где
deS
=
Q/T-
"внешнее"
изменение энтропии, связанное с обратимым
теплообменом с окружающей средой
(Q-бесконечно
малое кол-во теплоты, T-абс.
т-ра), diS-
"внутреннее"
изменение энтропии, обусловленное
самопроизвольным протеканием в системе
необратимых процессов. При этом di
S
О,
где знак равенства относится к состоянию
равновесия или к случаю обратимых
(квазистатич.) процессов. Величина diS
играет
центр. роль в Т. н. п.
К осн. задачам Т. н. п. относят исследование балансов физ. величин (энергии, массы, энтропии и др.) при переходах, превращениях и диссипации энергии, а также установление законов эволюции макроскопич. систем. В этой связи в Т.н.п. появляется и играет важную роль время t-переменная, отсутствующая в равновесной термодинамике (равновесные в термодинамич. смысле процессы протекают бесконечно медленно). Поэтому вместо (1) рассматривается соотношение:
dS/dt = deS/dt + diS/dt,
где величина P = diS/dt наз. глобальным произ-вом энтропии (т.е. относящееся ко всему объему системы).
Различают феноменологическую Т. н. п. и статистич. теорию неравновесных процессов. Феноменологическая Т. н. п., в свою очередь, подразделяется на линейную и нелинейную теории. Обычно в Т. н. п. рассматриваются три типа систем: однородные, прерывные и непрерывные. В однородных системах в любой момент времени интенсивные св-ва (параметры состояния) - т-ра, давление, хим. потенциал - одинаковы по всему объему. Прерывные (вентильные, гетерогенные) системы состоят из двух и более однородных частей, разделенных либо границей раздела фаз, либо вентилем (напр., газы в сосудах, соединенных мембраной или капилляром), так что св-ва меняются скачком при переходе из одной части в другую. Непрерывными наз. системы, интенсивные св-ва к-рых можно считать непрерывными ф-циями координат точки внутри системы (полевых переменных) и времени.
Соотношения, характеризующие процессы переноса массы, энергии, заряда, энтропии и т.д., записываются в виде балансовых ур-ний. Такие ур-ния м. б. записаны как для непрерывных, так и для прерывных систем. В них всегда фигурируют величины двух типов, одни из к-рых трактуются как потоки, другие-как силы. Потоки характеризуют скорость переноса физ. величины (энергии, массы, энтропии и т.д.) через воображаемую единичную площадку или скорость хим. р-ции. Термодинамич. силы-это причины, порождающие потоки. Для процессов переноса в непрерывных системах силы имеют характер градиентов (т-ры, концентрации и т.п.), в прерывных - конечных разностей этих величин.
Неравновесные процессы принято подразделять на скалярные, векторные и тензорные, если потоки и силы являются соотв. скалярами, векторами или тензорами. В зависимости от этого для описания процессов нужно использовать скалярное, векторное поле или поле тензора 2-го ранга. К группе скалярных процессов относят, в частности, хим. р-ции (скорость р-ции в каждой точке внутри системы характеризуется скалярной величиной). К векторным процессам относят, напр., теплопроводность и диффузию (с ними связаны поля векторов потоков тепла и в-ва). Примером тензорного процесса служит вязкое течение. Классификация процессов по тензорным св-вам не является формальной, но связана с содержанием принципа Кюри (см. ниже). Ур-ния балансов массы, импульса, полной энергии имеют смысл законов сохранения. Баланс внутр. энергии суть первое начало термодинамики. Его можно представить в виде ур-ния:
где
и,
u, q-уд.
локальные (относящиеся к нек-рому
выделенному элементу объема) внутр.
энергия, объем и кол-во тепла соотв.; p
-давление;
Jk-
диффузионный
поток k-го
компонента в поле внеш. силы Fk,
действующей
на единицу массы k-го
компонента (точка означает скалярное
произведение); V-вектор
скорости центра масс системы в поле
внутр. напряжений; П-тензор вязких
напряжений (вязкий тензор давления);
(двоеточие
означает двукратную свертку). Для
невязких систем в поле сил тяготения
последние два слагаемых обращаются в
нуль, и приведенная формулировка первого
начала аналогична формулировкам,
принятым в равновесной термодинамике.
Явление переноса в термодинамически неравновесных системах
В термодинамических неравновесных системах возникают особые необратимые процессы, в результате которых происходит пространственный перенос энергии, массы и импульса.
Если газ находится в состоянии равновесия, макроскопические параметры в различных частях системы одинаковы. Однако если в произвольной части системы один из параметров изменился, т. е. система стала неравновесной, возникнут процессы, стремящиеся вернуть систему в равновесное состояние, и эти процессы называют явлением переноса.
В зависимости от того, какой параметр изменяется, различают:
теплопроводность — перенос энергии;
диффузия — перенос массы;
вязкость (или внутреннее трение) — перенос импульса.
Теплопроводность
Если в одной области газа средняя кинетическая энергия молекул больше, чем в другой, то с течением времени вследствие постоянных столкновений молекул происходит процесс выравнивания средних кинетических энергий молекул, т. е. выравнивание температур.
Законы диффузии
Нам следует изучить перенос газов через барьер между альвеолярным воздухом и кровью. Этот перенос происходит за счет диффузии. Всего лишь 40 лет назад некоторые физиологи считали, что в легких происходит секреция кислорода в капилляры, т. е. его перемещение против градиента парциального давления. Такой процесс, требующий затрат энергии, протекает в плавательном пузыре рыбы. Однако в дальнейшем с помощью более точных методик было показано, что все газы в легких проходят через альвеолярную стенку исключительно путем пассивной диффузии. Диффузия веществ через ткани описывается законом Фика, согласно которому скорость переноса газа через слой ткани прямо пропорциональна площади этого слоя и разнице парциального давления газа по обе его стороны и обратно пропорциональна толщине слоя. Площадь альвеолярно-капиллярного барьера в легких огромна (50—100 м2), а толщина его менее 0,5 мкм, т. е. по своим размерам он прекрасно подходит для диффузии.
Закон внутреннего трения Ньютона |
Предположение о линейной зависимости силы внутреннего трения (молекулярной вязкости) от производной скорости V по нормали к плоскости движения
Здесь τ — сила внутреннего трения, отнесенная к единице поверхности (напряжение трения); η—коэффициент вязкости, определяемый в случае газа его природой и температурой, а в случае капельной жидкости — также и давлением. |
