Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФИЗИКА.docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
851.85 Кб
Скачать

51.Статистическое толкование энтропии.

Рассматривая Вселенную как изолированную систему и распространяя на неё второй закон термодинамики, Р. Клаузиус пришёл к выводу о неизбежности «тепловой смерти» Вселенной, при которой в необозримом будущем в ней будет достигнуто состояние термодинамического равновесия и всякие процессы прекратятся. Этот вывод вызвал много споров, которые не прекращаются до сих пор. Из сказанного в предыдущем разделе следует, что к Вселенной в целом как изолированной системе (F = 0) второе начало термодинамики неприменимо по определению. В силу этого предсказанная Р. Клаузиусом «тепловая смерть» вследствие непрерывного возрастания энтропии ей не угрожает. Понятие энтропии приложимо исключительно к открытым (неизолированным) термодинамическим системам.

Напомним, что ни классическая, ни современная термодинамика не отрицают применимости второго начала к изолированным системам и в силу этого принципиально не могут противостоять упомянутому выше утверждению Клаузиуса достаточно решительно. Они опираются на статистическое истолкование второго закона с помощью формулы Больцмана: S = k ln P, где Pтермодинамическая вероятность состояния системы. При этом второй закон термодинамики формулируется следующим образом: природа стремится от состояния менее вероятного к состоянию более вероятному.

Таким образом, являясь статистическим законом, второй закон классической термодинамики выражает закономерности хаотического движения большого числа частиц, входящих в состав изолированной системы. Для систем с относительно малым или бесконечным числом частиц второй закон термодинамики неприменим: в первом случае из-за возможных значительных флуктуаций, во втором — из-за равновероятности всех микросостояний.

Как видим, формулировка второго закона термодинамики, данная Больцманом, содержит в себе указание на относительность (нефундаментальность) этого закона и на недопустимость распространения его, на всю Вселенную в целом. В масштабах последней «на отдельных её участках вполне вероятны весьма мощные флуктуации энтропии. На этих участках естественными и самопроизвольными будут те процессы, которые сопровождаются не ростом, а уменьшением энтропии».

«Решив» таким образом, проблему тепловой смерти Вселенной, классическая и современная термодинамика одновременно предоставили карт-бланш изобретателям вечных двигателей второго рода. В самом деле, равновесную окружающую среду вполне правомерно представить как систему с бесконечным числом частиц (молекул) и на этом основании игнорировать второй закон термодинамики. С другой стороны, двигатель в масштабах окружающей среды представляет собой систему с относительно малым числом частиц, для которой второй закон термодинамики также неприменим. Возможность отбора теплоты от окружающей среды для выполнения работы оказалась, таким образом, вполне легитимной. Тем более, что для отопления помещений посредством тепловых насосов отбор теплоты от окружающей среды широко практикуется.

52.Термодинамические потенциалы. Направление течения процессов в неравновесных состояниях.

Потенциалы термодинамические, определённые функции объёма (V), давления (р), температуры (Т), энтропии (S), числа частиц системы (N) и др. макроскопических параметров (xi), характеризующих состояние термодинамической системы. К Потенциалы термодинамические относятся: внутренняя энергия U = U (S, V, N, xi); энтальпия Н = Н (S, р, N, xi); Гельмгольцева энергия (свободная энергия, или изохорно-изотермический потенциал, обозначается А или F) F = F (V, T, N, xi), Гиббсова энергия (изобарно-изотермический потенциал, обозначается Ф или G) G = G (p, Т, N, xi) и др. Зная Потенциалы термодинамические как функцию указанных параметров, можно получить путём дифференцирования Потенциалы термодинамические все остальные параметры, характеризующие систему, подобно тому как в механике можно определить компоненты действующих на систему сил, дифференцируя потенциальную энергию системы по соответствующим координатам. Потенциалы термодинамические связаны друг с другом следующими соотношениями: F = U TS, Н = U + pV, G = F + pV. Если известен какой-либо один из Т. п., то можно определить все термодинамические свойства системы, в частности получить уравнение состояния. При помощи Потенциалы термодинамические выражаются условия термодинамического равновесия системы и критерии его устойчивости.

Совершаемая термодинамической системой в какой-либо процессе работа определяется убылью Потенциалы термодинамические, отвечающего условиям процесса. Так, в условиях теплоизоляции (адиабатический процесс, S = const) элементарная работа dA равна убыли внутренней энергии: dA = — dU. При изотермическом процессе (Т = const) dA = — dF (в этом процессе работа совершается не только за счёт внутренней энергии, но и за счёт поступающей в систему теплоты). Часто процессы в системах, например химические реакции, идут при постоянных р и Т. В этом случае элементарная работа всех термодинамических сил, кроме сил давления, равна убыли термодинамического потенциала Гиббса (G), т. е. dA" = — dG. Равенство dA = — dU выполняется как для квазистатических (обратимых) адиабатических процессов, так и для нестатических (необратимых). В остальных же случаях работа равна убыли Потенциалы термодинамические только при квазистатических процессах, при нестатических процессах совершаемая работа меньше изменения Потенциалы термодинамические Теоретическое определение Потенциалы термодинамические как функций соответствующих переменных составляет основную задачу статистической термодинамики.

Неравновесные процессы в термодинамике и статистической физике физические процессы, включающие неравновесные состояния. Примеры: процесс установления равновесия (термодинамического или статистического) в системе, находившейся ранее в неравновесном состоянии; переход системы из равновесного состояния в неравновесное или из одного неравновесного состояния в другое под влиянием внешних возмущений. В неизолированных системах Н. п. могут протекать стационарно (без изменения физического состояния системы, пример — Теплопередача теплопроводностью при постоянной разности температур). Н. п. являются необратимыми процессами, связанными с производством энтропии.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]