- •1.Материальная точка. Абсолютно твёрдое тело. Система отсчёта.
- •2.Кинематика точки. Путь. Перемещение. Скорость и ускорение. Их проекции на координатные оси. Вычисление пройденного пути. Средние значения.
- •3.Скорость и ускорение при криволинейном движении. Тангенциальное и нормальное ускорения.
- •4.Кинематика твёрдого тела. Вращение вокруг неподвижной оси. Угловые скорость и ускорения. Связь между угловыми и линейными скоростями и ускорениями.
- •5.Границы применимости ньютоновской механики. Первый закон Ньютона.
- •6.Масса и импульс. Второй закон Ньютона как уравнение движения.
- •7.Третий закон Ньютона. Центр масс. Уравнение движения центра масс.
- •8.Сила тяжести и вес тела. Упругие силы. Силы трения.
- •9.Законы сохранения. Силы внутренние и внешние. Замкнутая система. Сохраняющиеся величины. Связь законов сохранения со свойствами пространства и времени.
- •10.Закон сохранения импульса. Реактивное движение. Движение тела с переменной массой.
- •11.Работа переменной силы и мощность. Кинетическая энергия частицы.
- •12.Потенциальная энергия. Виды потенциальной энергии. Связь силы и потенциальной энергии.
- •13.Полная механическая энергия частицы. Консервативные и диссипативные системы. Закон сохранения энергии.
- •14.Закон всемирного тяготения. Гравитационное поле и его характеристики. Потенциал поля. Связь между потенциалом и напряжённостью поля. Космические скорости.
- •15.Вывод основного закона динамики вращательного движения.
- •16.Момент инерции тела относительно оси. Момент инерции кольца, диска.
- •17.Момент инерции шара. Теорема Штейнера.
- •18.Момент импульса. Уравнение моментов. Закон сохранения момента импульса.
- •19.Гироскоп. Свободные оси. Главные оси момента инерции. Регулярная прецессия.
- •20.Работа силы при вращении твердого тела. Кинетическая энергия вращающегося тела.
- •21.Неинерциальные системы отсчёта. Силы инерции. Принцип эквивалентности. Уравнение движения в неинерциальных системах отсчёта.
- •22.Принцип относительности Галилея. Преобразования Галилея. Классическая теорема сложения скоростей. Инвариантность законов Ньютона в инерциальных системах отсчёта.
- •23.Постулаты Эйнштейна для сто. Преобразования Лоренца.
- •24.Относительность понятия одновременности. Относительность длин и промежутков времени. Интервал между событиями. Его инвариантность. Причинность.
- •25.Релятивистский закон преобразования скорости. Релятивистский импульс.
- •26.Релятивистское уравнение динамики. Релятивистское выражение для кинетической и полной энергии. Взаимосвязь массы и энергии.
- •27.Уравнение свободных колебаний без трения: пружинный маятник. Его решения. Вектор-амплитуда.
- •28.Физические и математические маятники.
- •29.Гармонический осциллятор. Энергия гармонического осциллятора. Сложение одинаково направленных и взаимно перпендикулярных колебаний.
- •30.Уравнение затухающих колебаний и его решение. Коэффициент затухания. Логарифмический декремент затухания. Добротность.
- •31. Уравнение вынужденных колебаний и его решение. Векторная диаграмма. Амплитуда и фаза вынужденных колебаний.
- •32.Резонанс. Резонансные кривые для амплитуды и фазы вынужденных колебаний.
- •33.Гидродинамика. Линии тока. Уравнение Бернулли.
- •34.Ламинарное и турбулентное течение жидкости. Сила вязкого трения в жидкости. Число Рейнольдса. Формула Пуазейля.
- •35.Термодинамический метод исследования. Термодинамические параметры. Равновесные состояния и процессы, их изображение на термодинамических диаграммах.
- •36.Вывод уравнения молекулярно-кинетической теории идеальных газов для давления и его сравнения с уравнением Клайперона-Менделеева.
- •37.Средняя кинетическая энергия молекул. Молекулярно-кинетическое толкование абсолютной температуры. Число степеней свободы. Закон равномерного распределения энергии по степеням свободы молекул.
- •38.Работа газа при изменении его объёма. Количество теплоты. Теплоёмкость. Первое начало термодинамики.
- •39.Приминение первого начала термодинамики к изопроцессам и адиабатному процессу идеального газа. Зависимость теплоёмкости идеального газа от вида процесса.
- •40.Работа, совершаемая идеальным газом в различных процессах.
- •41.Адиабатный процесс. Уравнение Пуассона для адиабатного процесса.
- •42.Политропический процесс. Теплоёмкость газа в политропическом процессе.
- •44.Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям.
- •45.Барометрическая формула. Закон Больцмана для распределения частиц во внешнем потенциальном поле.
- •46.Среднее число столкновений и средняя длина свободного пробега молекул. Их связь с концентрацией и размером молекул.
- •47. Понятие о разрежённых газах. Вакуум и методы его получения.
- •48.Обратимые и необратимые процессы. Круговой процесс (цикл). Тепловые двигатели и холодильные машины. Термический кпд.
- •49.Цикл Карно и его кпд для идеального газа. Второе начало термодинамики. Независимость кпд цикла Карно от рабочего вещества. Лемма Карно.
- •50.Энтропия идеального газа при обратимых и необратимых процессах.
- •51.Статистическое толкование энтропии.
- •52.Термодинамические потенциалы. Направление течения процессов в неравновесных состояниях.
- •53.Термодинамика необратимых процессов. Явления переноса в термодинамически неравновесных системах. Опытные законы диффузии, теплопроводности и внутреннего трения.
- •54.Реальные газы. Силы и потенциальная энергия межмолекулярного взаимодействия. Уравнение Ван-дер-Ваальса.
- •55.Изотермы Ван-дер-Ваальса и их сопоставление с реальными изотермами. Критическая температура. Внутренняя энергия газа Ван-дер-Ваальса.
- •56.Тепловые явления при низких температурах. Третье начало термодинамики.
- •57.Понятие фазы. Фазовые переходы 1 и 2 рода. Фазовые диаграммы. Тройная точка.
46.Среднее число столкновений и средняя длина свободного пробега молекул. Их связь с концентрацией и размером молекул.
Средние
скорости молекул, газа очень велики -
порядка сотен метров в секунду при
обычных условиях. Однако процесс
выравнивая неоднородности в газе
вследствие молекулярного движения
протекает весьма медленно. Это объясняется
тем, что молекулы при перемещении
испытывают соударения с другими
молекулами. При каждом соударении
скорость молекулы изменяется по величине
и направлению. Вследствие этого, скорость,
с которой молекула диффундирует из
одной части газа в другую, значительно
меньше средней скорости молекулярного
движения. Для оценки скорости движения
молекул вводится понятие средней длины
свободного пробега. Таким образом,
средняя дли свободного пробега
-
это среднее расстояние, которое проходит
молекула от столкновения до столкновения.
Для
определения
вычислим
сначала среднее число соударений
выбранной
молекулы с другими молекулами за единицу
времени. Будем считать, что молекула
после соударения продолжает двигаться
по прямой со средней скоростью движения
.
Молекулы,
с которыми соударяется выбранная
молекула, в первом приближении считаем
неподвижными и принимаем их за сферические
тела радиуса r. Пусть выбранная молекула
движется вправо из положения
в
положение
по
прямой
(рис.11.3).
При своем движении она испытывает
соударения с теми неподвижными молекулами,
центры которых лежат не дальше чем 2r от
траектории
.
Иными словами, движущаяся со средней
скоростью молекула в течении одной
секунды столкнется со всеми молекулами,
центры которых находятся в объеме
ограниченном цилиндром с радиусом 2r и
длиной
,
т.е.
.
Если концентрация молекул n , то внутри рассмотренного цилиндра находится число молекул, равное
Это число и определяет среднее число соударений за единицу времени.
Предположение
о том, что все молекулы, кроме одной,
неподвижны, является, конечно не верным.
В действительности все молекулы движутся,
и возможность соударения двух частиц
зависит от их относительной скорости.
Поэтому вместо среднеарифметической
скорости
должны
входить средняя относительная скорость
молекул
.
Если скорости молекул распределены по
закону Максвелла, то, как можно показать,
средняя относительная скорость двух
молекул однородного газа в
раз
превышает
.
Таким образом, среднее число соударений
должно быть увеличено в
раз
|
(11.7) |
Средний
путь, проходимый молекулой за единицу
времени, численно равен
.
Поэтому средняя длина свободного пробега
равна
или
|
(11.8) |
Таким
образом, средняя длина свободного
пробега
не
зависит от температуры газа, т.к. с ростом
температуры одновременно возрастают
и
,
и
.
При подсчете числа соударений и средней
длины свободного пробега молекул за
модель молекулы было принято шарообразное
упругое тело. В действительности каждая
молекула представляет собой сложную
систему элементарных частиц и при
рассмотрении упругого соударения
молекул имелось в виду, что центры
молекул могут сблизиться до некоторого
наименьшего расстояния. Затем возникает
силы отталкивания которые вызывают
взаимодействие, подобное взаимодействию
при упругом ударе. Среднее расстояние
между центрами молекул, взаимодействующих,
как при упругом ударе, называют эффективным
диаметром
.
Тогда
|
(11.9) |
