Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФИЗИКА.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
851.85 Кб
Скачать

27.Уравнение свободных колебаний без трения: пружинный маятник. Его решения. Вектор-амплитуда.

Пружинный маятник.

 Колебательная система в этом случае представляет собой совокупность некоторого тела и прикрепленной к нему пружины. Пружина может располагаться либо вертикально (вертикальный пружинный маятник), либо горизонтально (горизонтальный пружинный маятник). ,где ах – ускорение, т - масса, х - смещение пружины, k – жесткость пружины.

Это уравнение называют уравнением свободных колебаний пружинного маятника.

Оно правильно описывает рассматриваемые колебания лишь тогда, когда выполнены следующие предположения:

1)силы трения, действующие на тело, пренебрежимо малы и поэтому их можно не учитывать;

2) деформации пружины в процессе колебаний тела невелики, так что можно их считать упругими и в соответствии с этим пользоваться законом Гука.

Свободные колебания пружинного маятника имеют следующие причины.

1. Действие на тело силы упругости, пропорциональной смещению тела х от положения равновесия и направленной всегда к этому положению.

2. Инертность колеблющегося тела, благодаря которой оно не останавливается в положении равновесия (когда сила упругости об­ращается в нуль), а продолжает двигаться в прежнем направлении.

            Выражение для циклической частоты имеет вид: ,

где  w - циклическая частота,  k - жесткость пружины,  т - масса.

Эта  формула показывает, что частота свободных колебаний не зависит от начальных условий и полностью определяется собственными характеристиками самой колебательной системы — в данном случае жесткостью k и массой т.

Это выражение определяет период свободных колебаний пружинного маятника.

Пускай имеется система, состоящая из пружины (подчиняющейся закону Гука), один конец которой жёстко закреплён, а на другом находится тело массой m. Колебания совершаются в среде, где сила сопротивления пропорциональна скорости с коэффициентом c (см. вязкое трение).

Тогда второй закон Ньютона для рассматриваемой системы запишется так:

где Fc — сила сопротивления, Fy — сила упругости

Fc = − cv, Fy = − kx, то есть

ma + cv + kx = 0

или в дифференциальной форме

где k — коэффициент упругости в законе Гука, a — ускорение горизонтального движения грузика.

Для упрощения вводятся следующие обозначения:

Величину ω называют собственной частотой системы, ζ — коэффициентом затухания.

Тогда дифференциальное уравнение принимает вид

Сделав замену x = eλt, получают характеристическое уравнение

Корни, которого вычисляются по следующей формуле

Зависимость графиков колебаний от значения ζ.

В зависисимости от величины коэффицинта затухания решение разделяется на три возможных варианта.

Апериодичность

Если , то имеется два действительных корня, и решение дифференциального уравнения принимает вид:

В этом случае колебания с самого начала экспоненциально затухают.

Граница периодичности

Если , два действительных корня совпадают , и решением уравнения является:

В данном случае может иметь место временный рост, но потом — экспоненциальное затухание.

Слабое затухание

Если , то решением характеристического уравнения являются два комплексно сопряжённых корня

Тогда решением исходного дифференциального уравнения является

Где  — собственная частота затухающих колебаний.

Константы c1 и c2 в каждом из случаев определяются из начальных условий:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]