- •1.Материальная точка. Абсолютно твёрдое тело. Система отсчёта.
- •2.Кинематика точки. Путь. Перемещение. Скорость и ускорение. Их проекции на координатные оси. Вычисление пройденного пути. Средние значения.
- •3.Скорость и ускорение при криволинейном движении. Тангенциальное и нормальное ускорения.
- •4.Кинематика твёрдого тела. Вращение вокруг неподвижной оси. Угловые скорость и ускорения. Связь между угловыми и линейными скоростями и ускорениями.
- •5.Границы применимости ньютоновской механики. Первый закон Ньютона.
- •6.Масса и импульс. Второй закон Ньютона как уравнение движения.
- •7.Третий закон Ньютона. Центр масс. Уравнение движения центра масс.
- •8.Сила тяжести и вес тела. Упругие силы. Силы трения.
- •9.Законы сохранения. Силы внутренние и внешние. Замкнутая система. Сохраняющиеся величины. Связь законов сохранения со свойствами пространства и времени.
- •10.Закон сохранения импульса. Реактивное движение. Движение тела с переменной массой.
- •11.Работа переменной силы и мощность. Кинетическая энергия частицы.
- •12.Потенциальная энергия. Виды потенциальной энергии. Связь силы и потенциальной энергии.
- •13.Полная механическая энергия частицы. Консервативные и диссипативные системы. Закон сохранения энергии.
- •14.Закон всемирного тяготения. Гравитационное поле и его характеристики. Потенциал поля. Связь между потенциалом и напряжённостью поля. Космические скорости.
- •15.Вывод основного закона динамики вращательного движения.
- •16.Момент инерции тела относительно оси. Момент инерции кольца, диска.
- •17.Момент инерции шара. Теорема Штейнера.
- •18.Момент импульса. Уравнение моментов. Закон сохранения момента импульса.
- •19.Гироскоп. Свободные оси. Главные оси момента инерции. Регулярная прецессия.
- •20.Работа силы при вращении твердого тела. Кинетическая энергия вращающегося тела.
- •21.Неинерциальные системы отсчёта. Силы инерции. Принцип эквивалентности. Уравнение движения в неинерциальных системах отсчёта.
- •22.Принцип относительности Галилея. Преобразования Галилея. Классическая теорема сложения скоростей. Инвариантность законов Ньютона в инерциальных системах отсчёта.
- •23.Постулаты Эйнштейна для сто. Преобразования Лоренца.
- •24.Относительность понятия одновременности. Относительность длин и промежутков времени. Интервал между событиями. Его инвариантность. Причинность.
- •25.Релятивистский закон преобразования скорости. Релятивистский импульс.
- •26.Релятивистское уравнение динамики. Релятивистское выражение для кинетической и полной энергии. Взаимосвязь массы и энергии.
- •27.Уравнение свободных колебаний без трения: пружинный маятник. Его решения. Вектор-амплитуда.
- •28.Физические и математические маятники.
- •29.Гармонический осциллятор. Энергия гармонического осциллятора. Сложение одинаково направленных и взаимно перпендикулярных колебаний.
- •30.Уравнение затухающих колебаний и его решение. Коэффициент затухания. Логарифмический декремент затухания. Добротность.
- •31. Уравнение вынужденных колебаний и его решение. Векторная диаграмма. Амплитуда и фаза вынужденных колебаний.
- •32.Резонанс. Резонансные кривые для амплитуды и фазы вынужденных колебаний.
- •33.Гидродинамика. Линии тока. Уравнение Бернулли.
- •34.Ламинарное и турбулентное течение жидкости. Сила вязкого трения в жидкости. Число Рейнольдса. Формула Пуазейля.
- •35.Термодинамический метод исследования. Термодинамические параметры. Равновесные состояния и процессы, их изображение на термодинамических диаграммах.
- •36.Вывод уравнения молекулярно-кинетической теории идеальных газов для давления и его сравнения с уравнением Клайперона-Менделеева.
- •37.Средняя кинетическая энергия молекул. Молекулярно-кинетическое толкование абсолютной температуры. Число степеней свободы. Закон равномерного распределения энергии по степеням свободы молекул.
- •38.Работа газа при изменении его объёма. Количество теплоты. Теплоёмкость. Первое начало термодинамики.
- •39.Приминение первого начала термодинамики к изопроцессам и адиабатному процессу идеального газа. Зависимость теплоёмкости идеального газа от вида процесса.
- •40.Работа, совершаемая идеальным газом в различных процессах.
- •41.Адиабатный процесс. Уравнение Пуассона для адиабатного процесса.
- •42.Политропический процесс. Теплоёмкость газа в политропическом процессе.
- •44.Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям.
- •45.Барометрическая формула. Закон Больцмана для распределения частиц во внешнем потенциальном поле.
- •46.Среднее число столкновений и средняя длина свободного пробега молекул. Их связь с концентрацией и размером молекул.
- •47. Понятие о разрежённых газах. Вакуум и методы его получения.
- •48.Обратимые и необратимые процессы. Круговой процесс (цикл). Тепловые двигатели и холодильные машины. Термический кпд.
- •49.Цикл Карно и его кпд для идеального газа. Второе начало термодинамики. Независимость кпд цикла Карно от рабочего вещества. Лемма Карно.
- •50.Энтропия идеального газа при обратимых и необратимых процессах.
- •51.Статистическое толкование энтропии.
- •52.Термодинамические потенциалы. Направление течения процессов в неравновесных состояниях.
- •53.Термодинамика необратимых процессов. Явления переноса в термодинамически неравновесных системах. Опытные законы диффузии, теплопроводности и внутреннего трения.
- •54.Реальные газы. Силы и потенциальная энергия межмолекулярного взаимодействия. Уравнение Ван-дер-Ваальса.
- •55.Изотермы Ван-дер-Ваальса и их сопоставление с реальными изотермами. Критическая температура. Внутренняя энергия газа Ван-дер-Ваальса.
- •56.Тепловые явления при низких температурах. Третье начало термодинамики.
- •57.Понятие фазы. Фазовые переходы 1 и 2 рода. Фазовые диаграммы. Тройная точка.
27.Уравнение свободных колебаний без трения: пружинный маятник. Его решения. Вектор-амплитуда.
Пружинный маятник.
Колебательная
система в этом случае представляет
собой совокупность некоторого тела и
прикрепленной к нему пружины. Пружина
может располагаться либо вертикально
(вертикальный пружинный маятник), либо
горизонтально (горизонтальный пружинный
маятник).
,где
ах – ускорение, т - масса, х - смещение
пружины, k – жесткость пружины.
Это уравнение называют уравнением свободных колебаний пружинного маятника.
Оно правильно описывает рассматриваемые колебания лишь тогда, когда выполнены следующие предположения:
1)силы трения, действующие на тело, пренебрежимо малы и поэтому их можно не учитывать;
2) деформации пружины в процессе колебаний тела невелики, так что можно их считать упругими и в соответствии с этим пользоваться законом Гука.
Свободные колебания пружинного маятника имеют следующие причины.
1. Действие на тело силы упругости, пропорциональной смещению тела х от положения равновесия и направленной всегда к этому положению.
2. Инертность колеблющегося тела, благодаря которой оно не останавливается в положении равновесия (когда сила упругости обращается в нуль), а продолжает двигаться в прежнем направлении.
Выражение
для циклической частоты имеет вид:
,
где w - циклическая частота, k - жесткость пружины, т - масса.
Эта формула показывает, что частота свободных колебаний не зависит от начальных условий и полностью определяется собственными характеристиками самой колебательной системы — в данном случае жесткостью k и массой т.
Это выражение определяет период свободных колебаний пружинного маятника.
Пускай имеется система, состоящая из пружины (подчиняющейся закону Гука), один конец которой жёстко закреплён, а на другом находится тело массой m. Колебания совершаются в среде, где сила сопротивления пропорциональна скорости с коэффициентом c (см. вязкое трение).
Тогда второй закон Ньютона для рассматриваемой системы запишется так:
где Fc — сила сопротивления, Fy — сила упругости
Fc = − cv, Fy = − kx, то есть
ma + cv + kx = 0
или в дифференциальной форме
где k — коэффициент упругости в законе Гука, a — ускорение горизонтального движения грузика.
Для
упрощения вводятся следующие обозначения:
Величину ω называют собственной частотой системы, ζ — коэффициентом затухания.
Тогда дифференциальное уравнение принимает вид
Сделав замену x = eλt, получают характеристическое уравнение
Корни, которого вычисляются по следующей формуле
Зависимость графиков колебаний от значения ζ.
В зависисимости от величины коэффицинта затухания решение разделяется на три возможных варианта.
Апериодичность
Если
,
то имеется два действительных корня, и
решение дифференциального уравнения
принимает вид:
В этом случае колебания с самого начала экспоненциально затухают.
Граница периодичности
Если
,
два действительных корня совпадают
,
и решением уравнения является:
В данном случае может иметь место временный рост, но потом — экспоненциальное затухание.
Слабое затухание
Если
,
то решением характеристического
уравнения являются два комплексно
сопряжённых корня
Тогда решением исходного дифференциального уравнения является
Где
—
собственная частота затухающих колебаний.
Константы
c1
и c2
в каждом из случаев определяются из
начальных условий:
