- •1.Материальная точка. Абсолютно твёрдое тело. Система отсчёта.
- •2.Кинематика точки. Путь. Перемещение. Скорость и ускорение. Их проекции на координатные оси. Вычисление пройденного пути. Средние значения.
- •3.Скорость и ускорение при криволинейном движении. Тангенциальное и нормальное ускорения.
- •4.Кинематика твёрдого тела. Вращение вокруг неподвижной оси. Угловые скорость и ускорения. Связь между угловыми и линейными скоростями и ускорениями.
- •5.Границы применимости ньютоновской механики. Первый закон Ньютона.
- •6.Масса и импульс. Второй закон Ньютона как уравнение движения.
- •7.Третий закон Ньютона. Центр масс. Уравнение движения центра масс.
- •8.Сила тяжести и вес тела. Упругие силы. Силы трения.
- •9.Законы сохранения. Силы внутренние и внешние. Замкнутая система. Сохраняющиеся величины. Связь законов сохранения со свойствами пространства и времени.
- •10.Закон сохранения импульса. Реактивное движение. Движение тела с переменной массой.
- •11.Работа переменной силы и мощность. Кинетическая энергия частицы.
- •12.Потенциальная энергия. Виды потенциальной энергии. Связь силы и потенциальной энергии.
- •13.Полная механическая энергия частицы. Консервативные и диссипативные системы. Закон сохранения энергии.
- •14.Закон всемирного тяготения. Гравитационное поле и его характеристики. Потенциал поля. Связь между потенциалом и напряжённостью поля. Космические скорости.
- •15.Вывод основного закона динамики вращательного движения.
- •16.Момент инерции тела относительно оси. Момент инерции кольца, диска.
- •17.Момент инерции шара. Теорема Штейнера.
- •18.Момент импульса. Уравнение моментов. Закон сохранения момента импульса.
- •19.Гироскоп. Свободные оси. Главные оси момента инерции. Регулярная прецессия.
- •20.Работа силы при вращении твердого тела. Кинетическая энергия вращающегося тела.
- •21.Неинерциальные системы отсчёта. Силы инерции. Принцип эквивалентности. Уравнение движения в неинерциальных системах отсчёта.
- •22.Принцип относительности Галилея. Преобразования Галилея. Классическая теорема сложения скоростей. Инвариантность законов Ньютона в инерциальных системах отсчёта.
- •23.Постулаты Эйнштейна для сто. Преобразования Лоренца.
- •24.Относительность понятия одновременности. Относительность длин и промежутков времени. Интервал между событиями. Его инвариантность. Причинность.
- •25.Релятивистский закон преобразования скорости. Релятивистский импульс.
- •26.Релятивистское уравнение динамики. Релятивистское выражение для кинетической и полной энергии. Взаимосвязь массы и энергии.
- •27.Уравнение свободных колебаний без трения: пружинный маятник. Его решения. Вектор-амплитуда.
- •28.Физические и математические маятники.
- •29.Гармонический осциллятор. Энергия гармонического осциллятора. Сложение одинаково направленных и взаимно перпендикулярных колебаний.
- •30.Уравнение затухающих колебаний и его решение. Коэффициент затухания. Логарифмический декремент затухания. Добротность.
- •31. Уравнение вынужденных колебаний и его решение. Векторная диаграмма. Амплитуда и фаза вынужденных колебаний.
- •32.Резонанс. Резонансные кривые для амплитуды и фазы вынужденных колебаний.
- •33.Гидродинамика. Линии тока. Уравнение Бернулли.
- •34.Ламинарное и турбулентное течение жидкости. Сила вязкого трения в жидкости. Число Рейнольдса. Формула Пуазейля.
- •35.Термодинамический метод исследования. Термодинамические параметры. Равновесные состояния и процессы, их изображение на термодинамических диаграммах.
- •36.Вывод уравнения молекулярно-кинетической теории идеальных газов для давления и его сравнения с уравнением Клайперона-Менделеева.
- •37.Средняя кинетическая энергия молекул. Молекулярно-кинетическое толкование абсолютной температуры. Число степеней свободы. Закон равномерного распределения энергии по степеням свободы молекул.
- •38.Работа газа при изменении его объёма. Количество теплоты. Теплоёмкость. Первое начало термодинамики.
- •39.Приминение первого начала термодинамики к изопроцессам и адиабатному процессу идеального газа. Зависимость теплоёмкости идеального газа от вида процесса.
- •40.Работа, совершаемая идеальным газом в различных процессах.
- •41.Адиабатный процесс. Уравнение Пуассона для адиабатного процесса.
- •42.Политропический процесс. Теплоёмкость газа в политропическом процессе.
- •44.Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям.
- •45.Барометрическая формула. Закон Больцмана для распределения частиц во внешнем потенциальном поле.
- •46.Среднее число столкновений и средняя длина свободного пробега молекул. Их связь с концентрацией и размером молекул.
- •47. Понятие о разрежённых газах. Вакуум и методы его получения.
- •48.Обратимые и необратимые процессы. Круговой процесс (цикл). Тепловые двигатели и холодильные машины. Термический кпд.
- •49.Цикл Карно и его кпд для идеального газа. Второе начало термодинамики. Независимость кпд цикла Карно от рабочего вещества. Лемма Карно.
- •50.Энтропия идеального газа при обратимых и необратимых процессах.
- •51.Статистическое толкование энтропии.
- •52.Термодинамические потенциалы. Направление течения процессов в неравновесных состояниях.
- •53.Термодинамика необратимых процессов. Явления переноса в термодинамически неравновесных системах. Опытные законы диффузии, теплопроводности и внутреннего трения.
- •54.Реальные газы. Силы и потенциальная энергия межмолекулярного взаимодействия. Уравнение Ван-дер-Ваальса.
- •55.Изотермы Ван-дер-Ваальса и их сопоставление с реальными изотермами. Критическая температура. Внутренняя энергия газа Ван-дер-Ваальса.
- •56.Тепловые явления при низких температурах. Третье начало термодинамики.
- •57.Понятие фазы. Фазовые переходы 1 и 2 рода. Фазовые диаграммы. Тройная точка.
22.Принцип относительности Галилея. Преобразования Галилея. Классическая теорема сложения скоростей. Инвариантность законов Ньютона в инерциальных системах отсчёта.
Принцип относительности Галилея – это принцип физического равноправия инерциальных систем отсчёта в классической механике, проявляющегося в том, что законы механики во всех таких системах одинаковы.
Математически принцип относительности Галилея выражает инвариантность (неизменность) уравнений механики относительно преобразований координат движущихся точек (и времени) при переходе от одной инерциальной системы к другой — преобразований Галилея. Пусть имеются две инерциальные системы отсчёта, одну из которых, S, условимся считать покоящейся; вторая система, S', движется по отношению к S с постоянной скоростью u так, как показано на рисунке. Тогда преобразования Галилея для координат материальной точки в системах S и S' будут иметь вид: x' = x - ut, у' = у, z' = z, t' = t (1) (штрихованные величины относятся к системе S', нештрихованные — к S). Т. о., время в классической механике, как и расстояние между любыми фиксированными точками, считается одинаковым во всех системах отсчёта. Из преобразований Галилея можно получить соотношения между скоростями движения точки и её ускорениями в обеих системах: v' = v - u, (2) a' = a. В классической механике движение материальной точки определяется вторым законом Ньютона: F = ma, (3) где m — масса точки, a F — равнодействующая всех приложенных к ней сил. При этом силы (и массы) являются в классической механике инвариантами, т. е. величинами, не изменяющимися при переходе от одной системы отсчёта к другой. Поэтому при преобразованиях Галилея уравнение (3) не меняется. Это и есть математическое выражение Галилеева принципа относительности.
ПРЕОБРАЗОВАНИЯ ГАЛИЛЕЯ.
В кинематике все системы отсчета равноправны между собой и движение можно описывать в любой из них. При исследовании движений иногда приходится переходить от одной системы отсчета ( с координатной системой ОХУZ) к другой - (О`Х`У`Z`). Рассмотрим случай, когда вторая система отсчета движется относительно первой равномерно и прямолинейно со скоростью V=соnst.
Для облегчения математического описания предположим, что соответствующие оси координат параллельны друг другу, что скорость направлена вдоль оси Х, и что в начальный момент времени (t=0) начала координат обеих систем совпадали друг с другом. Используя справедливое в классической физике допущение об одинаковом течении времени в обеих системах, можно записать соотношения, связывающие координаты некоторой точки А(х,у,z) и А (х`,у`,z`) в обеих системах. Такой переход от одной системы отсчета к другой носит название преобразований Галилея):
ОХУZ О`Х`У`Z`
t = t` t`= t
х = х` + Vxt х` = х - Vxt
y = y` y`= y
z = z` z` = z
x = v`x + Vx v`x = vx - Vx
ax = a`x a`x = ax
Ускорение в обеих системах одинаково (V=соnst). Глубокий смысл преобразований Галилея будет выяснен в динамике. Преобразование скоростей Галилея отражает имеющий место в классической физике принцип независимости перемещений.
Сложение скоростей в СТО
К
лассический
закон сложения скоростей не может быть
справедлив, т.к. он противоречит
утверждению о постоянстве скорости
света в вакууме. Если поезд движется со
скоростью v
и в вагоне в направлении движения поезда
распространяется световая волна, то ее
скорость относительна Земли все равно
c,
а не v + c.
Рассмотрим две системы отсчета.
В
системе K0
тело движется со скоростью v1.
Относительно же системы K
оно движется со скоростью v2.
Согласно закону сложения скоростей в
СТО:
Если
v << c
и v1 << c,
то слагаемым
можно
пренебречь, и тогда получим классический
закон сложения скоростей: v2 = v1 + v.
При
v1 = c
скорость v2
равна c,
как этого требует второй постулат теории
относительности:
При
v1 = c
и при v = c
скорость v2
вновь равна скорости c.
Замечательным свойством закона сложения является то, что при любых скоростях v1 и v (не больше c), результирующая скорость v2 не превышает c. Скорость движения реальных тел больше, чем скорость света, невозможна.
Сложение скоростей
При рассмотрении сложного движения (то есть когда точка или тело движутся в одной системе отсчёта, а она движется относительно другой) возникает вопрос о связи скоростей в 2 системах отсчёта.
Классическая механика
В классической механике абсолютная скорость точки равна векторной сумме её относительной и переносной скоростей:
Простым языком: Скорость движения тела относительно неподвижной системы отсчёта равна векторной сумме скорости этого тела относительно подвижной системы отсчета и скорости самой подвижной системы отсчета относительно неподвижной системы.
